找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Analysis; Course Notes from a J?rn Steuding Textbook 2016 Springer International Publishing AG 2016 Diophantine Analysis.Analy

[復(fù)制鏈接]
查看: 22744|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:15:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Diophantine Analysis
副標(biāo)題Course Notes from a
編輯J?rn Steuding
視頻videohttp://file.papertrans.cn/281/280529/280529.mp4
概述Present four different (nevertheless related) topics in Diophantine Analysis.Each part serves as a self-contained introduction to the topic.Each part present central results, relevant applications and
叢書名稱Trends in Mathematics
圖書封面Titlebook: Diophantine Analysis; Course Notes from a  J?rn Steuding Textbook 2016 Springer International Publishing AG 2016 Diophantine Analysis.Analy
描述.This collection of course notes from a number theory summer school focus on aspects of Diophantine Analysis, addressed to Master and doctoral students as well as everyone who wants to learn the subject. The topics range from Baker’s method of bounding linear forms in logarithms (authored by Sanda Buja?i? and Alan Filipin), metric diophantine approximation discussing in particular the yet unsolved Littlewood conjecture (by Simon Kristensen), Minkowski’s geometry of numbers and modern variations by Bombieri and Schmidt (Tapani Matala-aho), and a historical account of related number theory(ists) at the turn of the 19th Century (Nicola M.R. Oswald). Each of these notes serves as an essentially self-contained introduction to the topic. The reader gets a thorough impression of Diophantine Analysis by its central results, relevant applications and open problems. The notes are complemented with many references and an extensive register which makes it easy to navigate through the book..
出版日期Textbook 2016
關(guān)鍵詞Diophantine Analysis; Analytic Number Theory; Diophantine Approximation,; Transcendence Theory; Linear F
版次1
doihttps://doi.org/10.1007/978-3-319-48817-2
isbn_softcover978-3-319-84020-8
isbn_ebook978-3-319-48817-2Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightSpringer International Publishing AG 2016
The information of publication is updating

書目名稱Diophantine Analysis影響因子(影響力)




書目名稱Diophantine Analysis影響因子(影響力)學(xué)科排名




書目名稱Diophantine Analysis網(wǎng)絡(luò)公開度




書目名稱Diophantine Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Diophantine Analysis被引頻次




書目名稱Diophantine Analysis被引頻次學(xué)科排名




書目名稱Diophantine Analysis年度引用




書目名稱Diophantine Analysis年度引用學(xué)科排名




書目名稱Diophantine Analysis讀者反饋




書目名稱Diophantine Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:50:05 | 只看該作者
Albert K. W. Yeung,G. Brent Hallhe coefficients and the number of variables of the linear form. For a concrete set of numbers it is a big challenge to find such lower bounds. We will give a recent example on such lower bounds, namely a new generalised transcendence measure for ..
板凳
發(fā)表于 2025-3-22 03:56:03 | 只看該作者
地板
發(fā)表于 2025-3-22 08:33:43 | 只看該作者
A Geometric Face of Diophantine Analysis,he coefficients and the number of variables of the linear form. For a concrete set of numbers it is a big challenge to find such lower bounds. We will give a recent example on such lower bounds, namely a new generalised transcendence measure for ..
5#
發(fā)表于 2025-3-22 12:26:04 | 只看該作者
Historical Face of Number Theory(ists) at the Turn of the 19th Century,, University of Halle, 1895, [.]) as well as its modern reappearance in a paper of Shigeru Tanaka from 1985 Tanaka (A complex continued fraction transformation and its ergodic properties. Tokyo J Math 8:191–214, 1985, [.]).
6#
發(fā)表于 2025-3-22 15:00:45 | 只看該作者
7#
發(fā)表于 2025-3-22 20:12:49 | 只看該作者
Diophantine Analysis978-3-319-48817-2Series ISSN 2297-0215 Series E-ISSN 2297-024X
8#
發(fā)表于 2025-3-22 22:28:05 | 只看該作者
Trends of Spatial Database Systemsall unsolved at the time and several of them were very influential for 20th century mathematics. Hilbert believed it was essential for mathematicians to find new machineries and methods in order to solve the mentioned problems. The seventh problem deals with the transcendence of . for algebraic . an
9#
發(fā)表于 2025-3-23 03:37:19 | 只看該作者
10#
發(fā)表于 2025-3-23 08:23:26 | 只看該作者
Albert K. W. Yeung,G. Brent Halltor from a convex subset in an .-dimensional space, say in .. Hermann Minkowski answered this challenge with his convex body theorems. In these lectures we shall discuss how to apply Minkowski’s theorems to prove classical Diophantine inequalities and some variations of Siegel’s lemma. Further, we s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临高县| 高平市| 西乌珠穆沁旗| 涡阳县| 阳谷县| 尉氏县| 巴东县| 龙里县| 专栏| 沾化县| 桃园县| 天祝| 青海省| 游戏| 凭祥市| 五河县| 祥云县| 黄石市| 朝阳区| 东港市| 平舆县| 额敏县| 桦川县| 玉田县| 大名县| 安新县| 阳信县| 获嘉县| 唐河县| 古田县| 中江县| 永平县| 西充县| 江北区| 英山县| 南安市| 泰州市| 遵化市| 饶平县| 诸城市| 德清县|