找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimensions and Entropies in Chaotic Systems; Quantification of Co Gottfried Mayer-Kress Conference proceedings 1986 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 哥哥大傻瓜
51#
發(fā)表于 2025-3-30 10:01:27 | 只看該作者
Chaos-Chaos Phase Transition and Dimension Fluctuationdone to understand the internal order in chaos such as topological and fractal ones. The discovery of some routes to chaos has also (contributed to the better understandings of order in germinal chaos, but hereafter the order immersed in the fully developed or grown-stage chaos should be elucidated.
52#
發(fā)表于 2025-3-30 16:20:45 | 只看該作者
Scaling in Fat Fractalsnadequate to describe their fractal properties. An alternative approach can be couched in terms of the scaling of the coarse grained measure. For the more familiar “thin” fractals, the resulting scaling exponent reduces to the fractal codimension, but for fat fractals it is independent of the fracta
53#
發(fā)表于 2025-3-30 20:22:26 | 只看該作者
54#
發(fā)表于 2025-3-30 23:01:07 | 只看該作者
On the Fractal Dimension of Filtered Chaotic Signalschniques [l], which make possible, for instance, the estimation of fractal dimensions and metric entropies. A particularly relevant aspect of these procedures, which has not yet been pointed out, concerns the role of filtering. In fact, not only any measurement of experimental signals is to some ext
55#
發(fā)表于 2025-3-31 03:15:40 | 只看該作者
Efficient Algorithms for Computing Fractal Dimensionsed here build on existing work which has been described in the literature. The novelty of our methods lies first in the approach taken to the definition of computation of dimension (namely, via Monte Carlo calculation of the volume of an ε-cover of the point-set), and second in the use of data struc
56#
發(fā)表于 2025-3-31 07:12:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青海省| 龙海市| 洛南县| 正蓝旗| 双鸭山市| 左贡县| 湛江市| 浑源县| 清流县| 越西县| 景谷| 霍林郭勒市| 乐至县| 重庆市| 随州市| 神农架林区| 鄱阳县| 方城县| 东方市| 阿拉善右旗| 洪泽县| 太原市| 山丹县| 荔浦县| 潍坊市| 桐庐县| 中西区| 沙坪坝区| 隆回县| 武威市| 河东区| 衡山县| 龙里县| 宁乡县| 富源县| 沛县| 苍梧县| 远安县| 龙胜| 阿坝| 克拉玛依市|