找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimensionality Reduction with Unsupervised Nearest Neighbors; Oliver Kramer Book 2013 Springer-Verlag Berlin Heidelberg 2013 Computational

[復(fù)制鏈接]
查看: 39972|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:40:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors
編輯Oliver Kramer
視頻videohttp://file.papertrans.cn/281/280477/280477.mp4
概述Presents recent research in the Hybridization of Metaheuristics for Optimization Problems.State-of-the-Art book.Written from a leading expert in this field
叢書(shū)名稱Intelligent Systems Reference Library
圖書(shū)封面Titlebook: Dimensionality Reduction with Unsupervised Nearest Neighbors;  Oliver Kramer Book 2013 Springer-Verlag Berlin Heidelberg 2013 Computational
描述.This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results..?.
出版日期Book 2013
關(guān)鍵詞Computational Intelligence; Evolutionary Computation; Self-Adaptive Heuristics
版次1
doihttps://doi.org/10.1007/978-3-642-38652-7
isbn_softcover978-3-662-51895-3
isbn_ebook978-3-642-38652-7Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors影響因子(影響力)




書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors影響因子(影響力)學(xué)科排名




書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors被引頻次




書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors被引頻次學(xué)科排名




書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors年度引用




書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors年度引用學(xué)科排名




書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors讀者反饋




書(shū)目名稱Dimensionality Reduction with Unsupervised Nearest Neighbors讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:02:13 | 只看該作者
K-Nearest Neighborst part to play in this book. The chapter starts with an introduction to foundations in machine learning and decision theory with a focus on classification and regression. For the model selection problem, basic methods like cross-validation are introduced. Nearest neighbor methods are based on the la
板凳
發(fā)表于 2025-3-22 03:11:51 | 只看該作者
Ensemble Learninghbor and SVM classifiers and analyze its performance in a real-world application [69]. The ensembles are hybrids of . nearest neighbors classifiers that are based on averaging labels in the neighborhood of unknown patterns and the . SVMs that use separating hyperplanes.
地板
發(fā)表于 2025-3-22 06:30:53 | 只看該作者
5#
發(fā)表于 2025-3-22 10:43:25 | 只看該作者
6#
發(fā)表于 2025-3-22 13:16:37 | 只看該作者
7#
發(fā)表于 2025-3-22 20:07:22 | 只看該作者
8#
發(fā)表于 2025-3-22 21:51:19 | 只看該作者
9#
發(fā)表于 2025-3-23 02:20:56 | 只看該作者
Oliver KramerPresents recent research in the Hybridization of Metaheuristics for Optimization Problems.State-of-the-Art book.Written from a leading expert in this field
10#
發(fā)表于 2025-3-23 06:42:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 11:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
齐齐哈尔市| 太谷县| 永清县| 禄劝| 北川| 古交市| 新竹县| 武鸣县| 盱眙县| 修文县| 成安县| 自贡市| 桦南县| 韩城市| 凉城县| 九寨沟县| 屏南县| 台东市| 西华县| 西畴县| 绥滨县| 揭西县| 天峻县| 泰兴市| 开远市| 青河县| 富裕县| 开阳县| 仁布县| 芮城县| 定远县| 鹤山市| 什邡市| 米林县| 乳源| 寻甸| 阿坝| 习水县| 平武县| 桑日县| 平塘县|