找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital TV and Multimedia Communication; 15th International F Guangtao Zhai,Jun Zhou,Xiaokang Yang Conference proceedings 2019 Springer Nat

[復(fù)制鏈接]
樓主: 阿諛奉承
11#
發(fā)表于 2025-3-23 09:57:29 | 只看該作者
Deep Neural Network Acceleration Method Based on Sparsityetwork (DNN) based on high-performance GPU and CPU devices has achieved remarkable results in the fields of object detection and recognition. The DNNs have also been applied to social media, image processing and video processing. With the improvement of neural networks, the depth and complexity of v
12#
發(fā)表于 2025-3-23 16:36:45 | 只看該作者
Feature-Selecting Based Hashing via Deep Convolutional Neural Networksl representatives. In recent years, with the development of deep convolutional neural networks, there have been many deep hashing algorithms for image retrieval. This paper proposes a new deep hashing algorithm that adds a hash layer to the image classification networks to obtain hash codes. A const
13#
發(fā)表于 2025-3-23 21:58:05 | 只看該作者
Efficient and Robust Homography Estimation Using Compressed Convolutional Neural Networkd robust homography estimation algorithm is extremely necessary. In this paper, we design an innovative compressed convolutional neural network to estimate homographies which work very well. The model size of the network is less than 10?MB, which is small enough to be used on mobile devices. In addi
14#
發(fā)表于 2025-3-23 22:50:31 | 只看該作者
15#
發(fā)表于 2025-3-24 02:59:28 | 只看該作者
16#
發(fā)表于 2025-3-24 07:03:48 | 只看該作者
Real-Time Semantic Mapping of Visual SLAM Based on DCNNy visual SLAM system only contain low-level information. The unmanned system can work better if high-level semantic information is included. In this paper, we proposed a visual semantic SLAM method using DCNN (Deep Convolution Neural Network). The network is composed of feature extraction, multi-sca
17#
發(fā)表于 2025-3-24 13:27:46 | 只看該作者
18#
發(fā)表于 2025-3-24 17:45:14 | 只看該作者
19#
發(fā)表于 2025-3-24 20:11:33 | 只看該作者
1865-0929 organized in topical sections on image processing; machine learning; quality assessment;? telecommunications; video coding; video surveillance; virtual reality..978-981-13-8137-9978-981-13-8138-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
20#
發(fā)表于 2025-3-25 00:54:26 | 只看該作者
Egon Bahr – zur besonderen Verwendungraint item be added to the classification loss function, which is used to pick out some important nodes from the hash layer, and these selected nodes representing the picture are encoded. Compared with other existing algorithms, the performance of our algorithm has a certain improvement.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 09:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马关县| 乌兰察布市| 大余县| 莱阳市| 洛宁县| 黑山县| 志丹县| 安化县| 建阳市| 河南省| 和平区| 泸溪县| 绥中县| 元江| 武城县| 陵水| 闸北区| 保山市| 虹口区| 黄浦区| 长海县| 利川市| 株洲县| 舒兰市| 临沭县| 霍山县| 崇信县| 海安县| 平塘县| 东平县| 盐边县| 元朗区| 三河市| 霍城县| 自贡市| 莱州市| 海门市| 怀来县| 区。| 县级市| 台中县|