找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital Mental Health; A Practitioner‘s Gui Ives Cavalcante Passos,Francisco Diego Rabelo-da-P Book 2023 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: CLIP
11#
發(fā)表于 2025-3-23 13:31:58 | 只看該作者
Electronic Health Records to Detect Psychosis Risk,te prognostic accuracy in different settings in the UK and US. It is the only prognostic model in psychiatry to be implemented in real-world clinical practice, showing good evidence of feasibility. Dynamic prognostic models may be better able to model the time course of psychosis risk compared to static models.
12#
發(fā)表于 2025-3-23 15:50:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:04:29 | 只看該作者
14#
發(fā)表于 2025-3-24 01:45:33 | 只看該作者
15#
發(fā)表于 2025-3-24 05:05:03 | 只看該作者
16#
發(fā)表于 2025-3-24 09:06:12 | 只看該作者
The Use of Machine Learning Techniques to Solve Problems in Forensic Psychiatry,ne learning techniques and experimental designs that can be leveraged to address long-standing problems within the field. As such, it aims to provide a series of methodological recommendations for moving the field from advancements in risk prediction towards precision forensics.
17#
發(fā)表于 2025-3-24 12:20:02 | 只看該作者
https://doi.org/10.1007/978-3-030-29256-0s a tool to assist diagnosis, monitor treatment, and offer personalized interventions, also debating possibilities on how it could be further developed. Finally, limitations and barriers to the process of this new technology are discussed, alongside ethical implications.
18#
發(fā)表于 2025-3-24 17:12:41 | 只看該作者
19#
發(fā)表于 2025-3-24 22:08:37 | 只看該作者
Digital Phenotyping in Mood Disorders,s a tool to assist diagnosis, monitor treatment, and offer personalized interventions, also debating possibilities on how it could be further developed. Finally, limitations and barriers to the process of this new technology are discussed, alongside ethical implications.
20#
發(fā)表于 2025-3-25 02:56:38 | 只看該作者
Prediction of Suicide Risk Using Machine Learning and Big Data, using machine learning models to evaluate individualized suicide risk. Furthermore, key considerations, challenges, and the potential ethical implications of the clinical implementation of these algorithms are discussed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三台县| 盐池县| 洞头县| 元江| 淳化县| 宝山区| 信宜市| 田林县| 古浪县| 深泽县| 武陟县| 巢湖市| 磐石市| 孝义市| 文化| 门源| 香河县| 平罗县| 靖西县| 绩溪县| 黔西| 县级市| 万年县| 合水县| 五指山市| 昌平区| 潮安县| 出国| 浦东新区| 景德镇市| 宜宾市| 拉萨市| 抚宁县| 曲阜市| 蓝山县| 临沂市| 涟源市| 金乡县| 政和县| 蓬莱市| 秦皇岛市|