找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital Forensics and Watermarking; 17th International W Chang D. Yoo,Yun-Qing Shi,Gwangsu Kim Conference proceedings 2019 Springer Nature

[復(fù)制鏈接]
樓主: 力學(xué)
31#
發(fā)表于 2025-3-26 21:49:18 | 只看該作者
Nandita Chaudhary,Shashi Shuklaiction algorithm is essential and crucial. In this paper, a high-performance error-prediction method based on Multiple Linear Regression (MLR) algorithm is proposed to improve the performance of Reversible Data Hiding (RDH). The MLR matrix function that indicates the inner correlations between the p
32#
發(fā)表于 2025-3-27 01:16:54 | 只看該作者
https://doi.org/10.1007/978-3-030-11389-6cryptography; digital forensics; watermarking; steganalysis; steganography; security service; data hiding;
33#
發(fā)表于 2025-3-27 05:57:03 | 只看該作者
978-3-030-11388-9Springer Nature Switzerland AG 2019
34#
發(fā)表于 2025-3-27 12:36:53 | 只看該作者
35#
發(fā)表于 2025-3-27 13:36:45 | 只看該作者
36#
發(fā)表于 2025-3-27 20:36:03 | 只看該作者
37#
發(fā)表于 2025-3-28 00:29:45 | 只看該作者
38#
發(fā)表于 2025-3-28 05:04:07 | 只看該作者
Rethinking Resistance and Colonialism,ly PEE and MHM to embed the LSB of . to reserve space for secret data. Next, we encrypt the image and change the LSB of . to realize the embedding of secret data. In the process of extraction, the reversibility of image and secret data can be guaranteed. The utilization of correlation between neighb
39#
發(fā)表于 2025-3-28 10:15:08 | 只看該作者
Nandita Chaudhary,Shashi Shuklarovide a sparser prediction-error image for data embedding, and thus improves the performance of RDH. Experimental results have shown that the proposed method outperform the state-of-the-art error prediction algorithms.
40#
發(fā)表于 2025-3-28 14:18:10 | 只看該作者
Convolutional Neural Network for Larger JPEG Images Steganalysis. 512, 1024 . 1024 and 2048 . 2048. For different application scenes, we take two methods to generate large samples. The result demonstrates that the proposed scheme can make directly training the steganalysis detectors on large images feasible.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 04:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰县| 志丹县| 寿阳县| 岑溪市| 洮南市| 耿马| 怀远县| 宾阳县| 新闻| 务川| 安徽省| 望谟县| 新晃| 普兰县| 陆川县| 民丰县| 南投县| 辽中县| 东城区| 阿克陶县| 南溪县| 板桥市| 明溪县| 泰兴市| 玛纳斯县| 阳东县| 金川县| 响水县| 营山县| 琼海市| 淮滨县| 屯昌县| 天柱县| 井研县| 靖远县| 温宿县| 嘉禾县| 金川县| 嘉善县| 凌源市| 南平市|