找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital Communication and Soft Computing Approaches Towards Sustainable Energy Developments; Proceedings of ISSET Gayadhar Panda,Thaiyal Na

[復(fù)制鏈接]
樓主: CYNIC
11#
發(fā)表于 2025-3-23 11:29:20 | 只看該作者
Analyzing Customers Buying Behavior Before and After COVID-19 Using Association Rule Mining and Mac the demand and sales of some new items amid this. To effectively manage with such kind of changing economy, variety of products, their layout on shelves, and promoting special promotions, a quick and efficient customer purchasing pattern analysis is required which can help in increasing the revenue
12#
發(fā)表于 2025-3-23 15:30:12 | 只看該作者
13#
發(fā)表于 2025-3-23 18:28:38 | 只看該作者
Profitability Allocation of UAVs and Stopping Points Empowered MEC System,the technology on board, each spacecraft generates a large quantity of data that must be sent to prospective destinations. It is proposed that the well-known Intelligent Ocean Convergence Platform, which currently supports oceanic services, assists these services using cutting-edge Internet of Thing
14#
發(fā)表于 2025-3-23 23:10:32 | 只看該作者
Development of SPV-Assisted E-Mobility Charging System Based on Fuzzy Logic and PI Control as Chargg (MPPT) approach is suggested for using a boost converter derived from a photovoltaic (PV) panel at constant temp. 25?°C and constant irradiance. The constant current (CC) and constant voltage (CV) are two traditional methods for charging a battery. For fast charging with low loss, it is necessary
15#
發(fā)表于 2025-3-24 05:08:24 | 只看該作者
16#
發(fā)表于 2025-3-24 08:59:42 | 只看該作者
,A Comparative Analysis of?Short Term Load Forecasting Using LSTM, CNN, and?Hybrid CNN-LSTM,y comparing the results of three different deep learning models LSTM (Long-Short Term Memory), CNN (Convolutional Neural Network), and Hybrid CNN-LSTM for forecasting the short-term load, and each model is trained using sliding window algorithm and analyzed with statistical parameters like Mean Squa
17#
發(fā)表于 2025-3-24 13:44:56 | 只看該作者
Enhancing Grid Resilience for Improved Power System Reliability,d, also the need to lessen the effects of natural disasters. A sleek transition to a more intelligent grid depends heavily on the conceptualisation, expression, and assessment of the power grid‘s resilience. There have been several attempts to define, gauge, and evaluate smart grid resilience. Both
18#
發(fā)表于 2025-3-24 16:40:03 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:07 | 只看該作者
20#
發(fā)表于 2025-3-24 23:19:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
修文县| 鸡西市| 富源县| 临武县| 高清| 太康县| 高陵县| 扶沟县| 江山市| 邯郸市| 嵩明县| 郎溪县| 时尚| 花垣县| 澜沧| 望江县| 靖远县| 上栗县| 西和县| 三门县| 寻乌县| 渝北区| 安龙县| 高邑县| 舞阳县| 陆良县| 噶尔县| 高雄市| 揭东县| 始兴县| 孝感市| 灵山县| 夏河县| 太谷县| 绍兴县| 丰城市| 集贤县| 平乐县| 红安县| 娄烦县| 镇沅|