找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Digital Circuits for Binary Arithmetic; R. M. M. Oberman Textbook 1979Latest edition Macmillan Publishers Limited 1979 arithmetic.circuit.

[復制鏈接]
樓主: 萬能
11#
發(fā)表于 2025-3-23 10:34:19 | 只看該作者
Jelena Perevozcikova,Dmitry PavlyukIn the first book on the design of electronic switching circuits. the accumulator was defined as a circuit that adds and stores. This definition is the starting point for this chapter. This definition contrasts with the modern trend to indicate with this name nothing more than a register.
12#
發(fā)表于 2025-3-23 16:24:19 | 只看該作者
13#
發(fā)表于 2025-3-23 19:54:03 | 只看該作者
Multiplication,The multiplication of two binary digits is very simple. Its definition is given in Table 4–1, and follows from the laws of ordinary arithmetic with radix 2.
14#
發(fā)表于 2025-3-24 00:37:42 | 只看該作者
15#
發(fā)表于 2025-3-24 04:23:36 | 只看該作者
Accumulative Adding,In the first book on the design of electronic switching circuits. the accumulator was defined as a circuit that adds and stores. This definition is the starting point for this chapter. This definition contrasts with the modern trend to indicate with this name nothing more than a register.
16#
發(fā)表于 2025-3-24 07:25:23 | 只看該作者
17#
發(fā)表于 2025-3-24 12:34:35 | 只看該作者
Macmillan Publishers Limited 1979
18#
發(fā)表于 2025-3-24 18:06:51 | 只看該作者
http://image.papertrans.cn/d/image/279150.jpg
19#
發(fā)表于 2025-3-24 21:07:10 | 只看該作者
Cezary Krysiuk,Gabriel Nowacki,Jacek Brdulak. The division of two binary numbers has been, for some time, the most difficult of the four fundamental mathematical operations to implement in hardware. This originates, in my opinion, from the fact that the division algorism is more difficult to understand than the multiplication algorism.
20#
發(fā)表于 2025-3-24 23:41:15 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 13:06
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
图片| 全州县| 晋州市| 泰兴市| 彭山县| 周至县| 米易县| 祁东县| 花莲县| 高邮市| 江门市| 杨浦区| 思茅市| 泾川县| 井陉县| 景德镇市| 上高县| 宣化县| 延寿县| 额济纳旗| 淅川县| 湘西| 遂溪县| 东平县| 新乐市| 登封市| 龙海市| 河曲县| 黔南| 闽侯县| 贞丰县| 巩义市| 台安县| 巴南区| 福泉市| 平阳县| 葵青区| 高密市| 石棉县| 秦安县| 卓资县|