找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Diffusion Under Confinement; A Journey Through Co Leonardo Dagdug,Jason Pe?a,Ivan Pompa-García Textbook 2024 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: ED431
21#
發(fā)表于 2025-3-25 04:24:34 | 只看該作者
Three-Dimensional Systems one and two dimensions, while being finite for systems with three dimensions or more. We also study the absorption of a disk over a flat reflecting wall. At steady state, we can find the rate constant for such a system. An important extension to any shape is given by the Dudko-Berezhkovskii-Weiss formula.
22#
發(fā)表于 2025-3-25 11:01:37 | 只看該作者
23#
發(fā)表于 2025-3-25 14:08:28 | 只看該作者
https://doi.org/10.1007/978-3-319-49140-0bottom again and again, and a direct-transit segment, when it finally escapes moving without touching the bottom. Analytical expressions are derived for the Laplace transforms of the probability densities of the duration of the two segments.
24#
發(fā)表于 2025-3-25 18:18:01 | 只看該作者
25#
發(fā)表于 2025-3-25 20:28:16 | 只看該作者
26#
發(fā)表于 2025-3-26 01:23:48 | 只看該作者
Identifying the Warrant of an ArgumentIn this chapter, we solve the diffusion equation numerically by means of finite-difference methods (FDMs). For such purpose, the basic relations of the FDM are derived, and the diffusion equation is discretized. Emphasis is placed on the correct discretization of the boundary and initial conditions, even if a Dirac delta is included.
27#
發(fā)表于 2025-3-26 07:53:31 | 只看該作者
28#
發(fā)表于 2025-3-26 11:34:14 | 只看該作者
https://doi.org/10.1007/978-3-319-21103-9In this chapter, we introduce the Turing bifurcations, a type of bifurcation arising in reaction-diffusion systems. They lead to nontrivial spatial patterns, which we will study both analytically and numerically. These patterns form instabilities in spatially extended dissipative systems driven away from equilibrium.
29#
發(fā)表于 2025-3-26 13:49:26 | 只看該作者
30#
發(fā)表于 2025-3-26 18:37:21 | 只看該作者
Numerical Solutions of the Diffusion EquationIn this chapter, we solve the diffusion equation numerically by means of finite-difference methods (FDMs). For such purpose, the basic relations of the FDM are derived, and the diffusion equation is discretized. Emphasis is placed on the correct discretization of the boundary and initial conditions, even if a Dirac delta is included.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海林市| 聂拉木县| 酉阳| 泰州市| 通海县| 东明县| 泰和县| 宜君县| 靖远县| 黄大仙区| 牡丹江市| 方山县| 南溪县| 富民县| 蓬溪县| 平遥县| 镇赉县| 新郑市| 托克逊县| 贵南县| 洛扎县| 海丰县| 呼图壁县| 黑河市| 彭州市| 高邮市| 青川县| 枞阳县| 堆龙德庆县| 双辽市| 六盘水市| 天台县| 河南省| 垦利县| 临泉县| 辽宁省| 开封市| 阿坝县| 盈江县| 出国| 阿拉善右旗|