找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diffusion Under Confinement; A Journey Through Co Leonardo Dagdug,Jason Pe?a,Ivan Pompa-García Textbook 2024 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 15760|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:50:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Diffusion Under Confinement
副標(biāo)題A Journey Through Co
編輯Leonardo Dagdug,Jason Pe?a,Ivan Pompa-García
視頻videohttp://file.papertrans.cn/280/279023/279023.mp4
概述Provides an understanding of introductory topics in probability theory and Brownian motion.Presents a detailed theoretical description of diffusion under confinement subject to different boundary cond
圖書封面Titlebook: Diffusion Under Confinement; A Journey Through Co Leonardo Dagdug,Jason Pe?a,Ivan Pompa-García Textbook 2024 The Editor(s) (if applicable)
描述.This book offers the reader a journey through the counterintuitive nature of Brownian motion under confinement. Diffusion is a universal phenomenon that controls a wide range of physical, chemical, and biological processes. The transport of spatially-constrained molecules and small particles is ubiquitous in nature and technology and plays an essential role in different processes. Understanding the physics of diffusion under conditions of confinement is essential for a number of biological phenomena and potential technological applications in micro- and nanofluidics, among others..?.Studies on diffusion under confinement are typically difficult to understand for young scientists and students because of the extensive background on diffusion processes, physics, and mathematics that is required. All of this information is provided in this book, which is essentially self-contained as a result of the authors’ efforts to make it accessible to an audience of students from avariety of different backgrounds. The book also provides the necessary mathematical details so students can follow the technical process required to solve each problem. Readers will also find detailed explanations of t
出版日期Textbook 2024
關(guān)鍵詞Brownian particles; diffusion equation; mean first passage time; random walk; absorbing targets; confined
版次1
doihttps://doi.org/10.1007/978-3-031-46475-1
isbn_softcover978-3-031-46477-5
isbn_ebook978-3-031-46475-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Diffusion Under Confinement影響因子(影響力)




書目名稱Diffusion Under Confinement影響因子(影響力)學(xué)科排名




書目名稱Diffusion Under Confinement網(wǎng)絡(luò)公開度




書目名稱Diffusion Under Confinement網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Diffusion Under Confinement被引頻次




書目名稱Diffusion Under Confinement被引頻次學(xué)科排名




書目名稱Diffusion Under Confinement年度引用




書目名稱Diffusion Under Confinement年度引用學(xué)科排名




書目名稱Diffusion Under Confinement讀者反饋




書目名稱Diffusion Under Confinement讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:02:06 | 只看該作者
地板
發(fā)表于 2025-3-22 08:27:32 | 只看該作者
5#
發(fā)表于 2025-3-22 10:11:36 | 只看該作者
Diffusion in the Presence of a Force Fieldequation is referred to in the literature as the Smoluchowski equation, which is fundamental in the study of stochastic dynamics, as it can be applied to a number of problems related to physics and chemistry. An important result is that the backward Smoluchowski operator is the adjoint operator of t
6#
發(fā)表于 2025-3-22 16:29:40 | 只看該作者
Trapping Particles Influenced by External Forcesrticles diffuse in the presence of different potentials. This has a significant number of applications, including studying the conduction pathway for selected ions to trasverse the membrane through ion channels in the presence of an external force, which is a critical and ubiquitous process in cells
7#
發(fā)表于 2025-3-22 20:25:58 | 只看該作者
Splitting and Breaking Brownian Pathways: Conditional Processesrticles as well as their mathematical representation. To gain new insights into the escape dynamics, we analyze the “fine structure” of these trajectories. Specifically, we divide trajectories into two segments: a looping segment, when a particle unsuccessfully tries to escape returning to the trap
8#
發(fā)表于 2025-3-22 22:11:54 | 只看該作者
Diffusion with Stochastic Resettingserved in phenomena related to physics, chemistry, biophysics, and scientific computation. In the latter, it has been applied as a useful strategy to optimize search algorithms in hard combinatorial problems.
9#
發(fā)表于 2025-3-23 03:44:46 | 只看該作者
10#
發(fā)表于 2025-3-23 05:42:49 | 只看該作者
Three-Dimensional Systemsand splitting probabilities. For example, when the outer sphere goes to infinity, the splitting probability related to this boundary tends to zero for one and two dimensions, while being finite for systems with three dimensions or more. We also study the absorption of a disk over a flat reflecting w
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 08:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
纳雍县| 渝中区| 光山县| 凤庆县| 张家口市| 安图县| 黄大仙区| 巨野县| 巫山县| 长丰县| 富宁县| 南昌市| 洞头县| 门头沟区| 名山县| 连云港市| 孙吴县| 山阳县| 台州市| 永善县| 东兴市| 泸州市| 葵青区| 中宁县| 河北区| 临沧市| 冷水江市| 阜新市| 临汾市| 军事| 岗巴县| 克拉玛依市| 长寿区| 桃江县| 白玉县| 华亭县| 孟津县| 博兴县| 苏尼特右旗| 大荔县| 高阳县|