找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differenzialgleichungen in elementarer Darstellung; Eine Einführung für Wolfgang Lay Textbook 2021 Der/die Herausgeber bzw. der/die Autor(

[復(fù)制鏈接]
樓主: 使醉
21#
發(fā)表于 2025-3-25 05:39:19 | 只看該作者
22#
發(fā)表于 2025-3-25 08:33:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:01 | 只看該作者
24#
發(fā)表于 2025-3-25 18:06:58 | 只看該作者
Alexander Knapp,María Victoria Cengarlet es notwendig, einen bestimmten Blickwinkel einzunehmen. Da liegt es natürlich nahe, den Blickwinkel der Analysis auf die Funktion zu w?hlen. Um diesen Aspekt aber mit Gewinn einnehmen zu k?nnen, ist es ratsam, vorher noch denjenigen der Algebra zu w?hlen. So beginnen wir mit diesem Blick auf die F
25#
發(fā)表于 2025-3-25 20:56:44 | 只看該作者
https://doi.org/10.1007/978-3-319-28114-8gemein, dass es zuerst einer Orientierung bedarf, welche Arten von Differenzialgleichungen es überhaupt gibt. Bevor wir also in media res gehen, verlieren wir noch kurz ein paar Worte über die grundlegenden Charakteristika von Differenzialgleichungen.
26#
發(fā)表于 2025-3-26 03:52:14 | 只看該作者
On Logic Embeddings and G?del’s Goddem, was wir im vorigen Kapitel geschrieben haben, die linearen, gew?hnlichen Differenzialgleichungen erster Ordnung. Deshalb beginnen wir mit der Betrachtung dieser Gleichungen. Das Sch?ne dabei ist, dass man für diese Gleichung eine L?sung angeben kann, die au?erdem keinen gro?en rechentechnischen
27#
發(fā)表于 2025-3-26 06:16:01 | 只看該作者
Lecture Notes in Computer Sciencezu, einen Schritt weiter zu gehen und lineare gew?hnliche Differenzialgleichungen zweiter Ordnung ins Auge zu fassen. Und in der Tat, auch für diesen Typ von Differenzialgleichungen lassen sich analytische Methoden finden, welche zu zufriedenstellenden L?sungen führen. Allerdings muss zugegeben werd
28#
發(fā)表于 2025-3-26 09:43:56 | 只看該作者
29#
發(fā)表于 2025-3-26 14:48:21 | 只看該作者
https://doi.org/10.1007/978-3-031-15168-2hen, also die Approximation mit Polynomen und damit letztlich mit Potenzfunktionen. Dies ist nicht zuletzt deswegen von gro?em praktischen Nutzen, weil sich Potenzreihen auf ihrem Konvergenzintervall relativ leicht ableiten, integrieren und berechnen lassen. Da es sich aber bei Potenzreihen um mathe
30#
發(fā)表于 2025-3-26 17:45:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温宿县| 临城县| 安岳县| 邢台市| 孙吴县| 当涂县| 杭锦旗| 浦北县| 海门市| 青田县| 武隆县| 靖边县| 蛟河市| 新化县| 临高县| 寻甸| 且末县| 沁源县| 太保市| 东辽县| 武清区| 油尖旺区| 巴彦淖尔市| 甘泉县| 靖江市| 平泉县| 裕民县| 福泉市| 宁远县| 寻乌县| 积石山| 天柱县| 阜宁县| 泉州市| 玉门市| 建湖县| 鹿邑县| 大化| 惠来县| 安新县| 英山县|