找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentialgeometrie und homogene R?ume; Kai K?hler Textbook 20141st edition Springer Fachmedien Wiesbaden 2014 Differentialgeometrie.Dif

[復(fù)制鏈接]
樓主: 可樂(lè)
21#
發(fā)表于 2025-3-25 05:49:46 | 只看該作者
https://doi.org/10.1007/978-4-431-67929-5llstellen von Schnitten in Vektorfeldern zu erhalten. Deren (mit einem Vorzeichen gewichtete) Anzahl wird dabei mit einem Integral über ein bestimmtes Polynom in Termen der Krümmung des Levi-Civita-Zusammenhangs identifiziert. Einem Ansatz von Mathai und Quillen folgend, ist diese Formel genauer ein
22#
發(fā)表于 2025-3-25 10:53:23 | 只看該作者
23#
發(fā)表于 2025-3-25 12:03:54 | 只看該作者
Recent Advances in Nitric Oxide ResearchTrotzdem sind sie eine sehr spezielle Klasse von Mannigfaltigkeiten, an denen man viele allgemeinere Effekte nicht nachvollziehen kann, wie man z.B. an ihrem trivialen Tangentialbündel schon bemerkt. Deutlich interessantere und teilweise ?hnlich gut zu verstehende Beispiele findet man, in dem man Li
24#
發(fā)表于 2025-3-25 18:47:44 | 只看該作者
25#
發(fā)表于 2025-3-25 20:35:33 | 只看該作者
Studies in Computational Intelligencesum durch eine Mannigfaltigkeit modelliert wird und das Gravitationsfeld als eine nicht-positiv-definite quadratische Form interpretiert wird. In diesem Kapitel sollen weniger die kosmologischen und astronomischen Konsequenzen der Theorie untersucht werden, als vielmehr die Grundlagen wie etwa die F
26#
發(fā)表于 2025-3-26 00:28:46 | 只看該作者
https://doi.org/10.1007/978-3-8348-8313-1Differentialgeometrie; Differentialtopologie; Globale Analysis; Homogene R?ume; Lorentz-Gruppe; Mannigfal
27#
發(fā)表于 2025-3-26 05:48:55 | 只看該作者
28#
發(fā)表于 2025-3-26 10:21:39 | 只看該作者
Kai K?hlerVollst?ndiger Zugang zur Differentialgeometrie homogener R?ume.Kompakte Darstellung mit Beweisen.Für Studierende der Mathematik zur Vertiefung mit Schwerpunkt Differentialgeometrie im Bachelorstudium
29#
發(fā)表于 2025-3-26 15:24:02 | 只看該作者
http://image.papertrans.cn/d/image/278874.jpg
30#
發(fā)表于 2025-3-26 18:44:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英山县| 科技| 买车| 民县| 旬阳县| 雅江县| 崇文区| 隆昌县| 屏边| 宁晋县| 游戏| 吐鲁番市| 辽中县| 嘉义县| 甘洛县| 寿光市| 新津县| 阿坝县| 独山县| 桐庐县| 呼图壁县| 嘉祥县| 稷山县| 安多县| 邵东县| 府谷县| 淮安市| 柳江县| 离岛区| 泗阳县| 疏勒县| 舞钢市| 瑞昌市| 昭平县| 金乡县| 依安县| 漳浦县| 耒阳市| 淮滨县| 开江县| 惠水县|