找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentialgeometrie; Heinrich Brauner Book 1981 Springer Fachmedien Wiesbaden 1981 Ableitung.Analysis.Diffeomorphismus.Differentialgeome

[復(fù)制鏈接]
樓主: Polk
11#
發(fā)表于 2025-3-23 13:11:01 | 只看該作者
,Geometrie auf Fl?chen in ?,,Der Tangentialvektorraum einer .-Fl?che in ?. ist als Unterraum eines Tangentialvektorraumes von ?. ein euklidischer Vektorraum. Damit wird auf einem .-Blatt . ? ?. ein metrisches Tensorfeld definiert; eine Immersion .: . → ?. bestimmt ein metrisches Tensorfeld auf . ? ?..
12#
發(fā)表于 2025-3-23 15:27:19 | 只看該作者
,Riemannsche R?ume,In Verallgemeinerung des Begriffes Blatt definieren wir differenzierbare Mannigfaltigkeiten und studieren auf diesen differenzierbare Abbildungen. Die Zerlegung der Eins gestattet es, lokale Begriffsbildungen auf Mannigfaltigkeiten auszudehnen.
13#
發(fā)表于 2025-3-23 21:20:15 | 只看該作者
https://doi.org/10.1007/978-3-322-89712-1Ableitung; Analysis; Diffeomorphismus; Differentialgeometrie; Geometrie; Gleichung; Krümmung; Mannigfaltigk
14#
發(fā)表于 2025-3-23 23:40:51 | 只看該作者
978-3-528-03809-0Springer Fachmedien Wiesbaden 1981
15#
發(fā)表于 2025-3-24 05:11:13 | 只看該作者
16#
發(fā)表于 2025-3-24 10:13:04 | 只看該作者
D. Marc Kilgour,Herb Kunze,Xu Wanger Tr?germenge kommen einer Kurve zus?tzliche Eigenschaften zu, die vom Weg herrühren. Eine Aussage über eine Kurve hei?t eine geometrische Aussage, wenn sie gegen Parameterwechsel invariant ist und bei Bewegungen erhalten bleibt. Eine Punktmenge in ?. kann Tr?germenge von Kurven mit verschiedenen geometrischen Eigenschaften sein.
17#
發(fā)表于 2025-3-24 12:31:15 | 只看該作者
18#
發(fā)表于 2025-3-24 15:12:28 | 只看該作者
19#
發(fā)表于 2025-3-24 19:43:38 | 只看該作者
,Differentialgeometrie der Kurven in ?,er Tr?germenge kommen einer Kurve zus?tzliche Eigenschaften zu, die vom Weg herrühren. Eine Aussage über eine Kurve hei?t eine geometrische Aussage, wenn sie gegen Parameterwechsel invariant ist und bei Bewegungen erhalten bleibt. Eine Punktmenge in ?. kann Tr?germenge von Kurven mit verschiedenen geometrischen Eigenschaften sein.
20#
發(fā)表于 2025-3-25 03:11:20 | 只看該作者
,Krümmungstheorie der Fl?chen in ?,rt auf die Gleichung von Gau?. Der Normalanteil definiert den Gau?-Operator auf ., der jedem normierten Normalfeld von . ein symmetrisches 2-Tensorfeld auf . zuordnet; eine Immersion .: . ?. bestimmt bezüglich jedes normierten Normalfeldes l?ngs . ein Gau?sches Tensorfeld auf . ? ?..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
古田县| 阿瓦提县| 渝北区| 仁寿县| 哈尔滨市| 康马县| 历史| 苏尼特左旗| 乐东| 南康市| 宜都市| 苍溪县| 钟祥市| 浦东新区| 张家港市| 凤台县| 应城市| 无极县| 甘泉县| 京山县| 博野县| 普格县| 旌德县| 东乡| 奉节县| 高邮市| 神木县| 虹口区| 枞阳县| 安徽省| 康定县| 贵南县| 邳州市| 尤溪县| 菏泽市| 万州区| 珠海市| 平乐县| 蒲江县| 田林县| 南陵县|