找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential and Riemannian Manifolds; Serge Lang Textbook 1995Latest edition Springer-Verlag New York, Inc. 1995 De Rham cohomology.Hodge

[復(fù)制鏈接]
樓主: Scuttle
41#
發(fā)表于 2025-3-28 15:19:40 | 只看該作者
42#
發(fā)表于 2025-3-28 22:38:43 | 只看該作者
,Stokes’ Theorem,If . is a manifold and . a submanifold, then any differential form on . induces a form on .. We can view this as a very special case of the inverse image of a form, under the embedding (injection) map.
43#
發(fā)表于 2025-3-29 01:56:05 | 只看該作者
Differential Calculus,my book on real analysis [La 93] give a self-contained and complete treatment for Banach spaces. We summarize certain facts concerning their properties as topological vector spaces, and then we summarize differential calculus. . and start immediately with Chapter II if the reader is accustomed to th
44#
發(fā)表于 2025-3-29 05:10:16 | 只看該作者
45#
發(fā)表于 2025-3-29 07:29:28 | 只看該作者
Vector Bundles,al glueing procedure can be used to construct more general objects known as vector bundles, which give powerful invariants of a given manifold. (For an interesting theorem see Mazur [Maz 61].) In this chapter, we develop purely formally certain functorial constructions having to do with vector bundl
46#
發(fā)表于 2025-3-29 13:03:22 | 只看該作者
Operations on Vector Fields and Differential Forms,g forms.” Applying it to the tangent bundle, we call the sections of our new bundle differential forms. One can define formally certain relations between functions, vector fields, and differential forms which lie at the foundations of differential and Riemannian geometry. We shall give the basic sys
47#
發(fā)表于 2025-3-29 19:13:09 | 只看該作者
48#
發(fā)表于 2025-3-29 21:25:04 | 只看該作者
Covariant Derivatives and Geodesics,ssumed to be C. unless otherwise specified. We let X be a manifold. We denote the .-vector space of vector fields by ΓT(X). Observe that ΓT(X) is also a module over the ring of functions.We let π:TX →Xbe the natural map of the tangent bundle onto X.
49#
發(fā)表于 2025-3-30 00:02:18 | 只看該作者
Volume Forms,ose extension to the infinite dimensional case is not evident. So this chapter is devoted to these forms of maximal degree. In the next chapter, we shall study how to integrate them, so the present chapter also provides a transition from the differential theory to the integration theory.
50#
發(fā)表于 2025-3-30 04:13:17 | 只看該作者
,Applications of Stokes’ Theorem,the computation of the maximal de Rham cohomology (the space of all forms of maximal degree modulo the subspace of exact forms); some come from Riemannian geometry; and some come from complex manifolds, as in Cauchy’s theorem and the Poincaré residue theorem. I hope that the selection of topics will
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏边| 郴州市| 民勤县| 祁东县| 马鞍山市| 高碑店市| 阳东县| 榆树市| 嵊泗县| 牙克石市| 宁乡县| 茂名市| 华阴市| 怀宁县| 应城市| 绩溪县| 虹口区| 锡林郭勒盟| 监利县| 江西省| 台北县| 灵武市| 华宁县| 南雄市| 青阳县| 沧州市| 措美县| 绥芬河市| 新宾| 寿阳县| 江口县| 西平县| 科尔| 珲春市| 青铜峡市| 大埔县| 贵阳市| 福贡县| 阿荣旗| 密山市| 依安县|