找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential and Integral Inequalities; Wolfgang Walter Book 1970 Springer-Verlag Berlin Heidelberg 1970 Banach Space.Differentialungleich

[復(fù)制鏈接]
樓主: HAG
11#
發(fā)表于 2025-3-23 12:53:51 | 只看該作者
Continuous Functions on Compact Setsheir concrete assertions, a methodology for later problems connected with partial differential equa-tions. Chapter III, devoted to hyperbolic differential equations, contains in essence a translation of Chapter I into several dimensions, while the theory of the parabolic equations in Chapter IV is closely connected to the present Chapter II.
12#
發(fā)表于 2025-3-23 16:05:18 | 只看該作者
13#
發(fā)表于 2025-3-23 19:45:33 | 只看該作者
ndeutigkeitsproblemen" was published. The present volume grew out of the response to the demand for an English translation of this book. In the meantime the literature on differential and integral in- equalities increased greatly. We have tried to incorporate new results as far as possible. As a mat
14#
發(fā)表于 2025-3-23 23:42:35 | 只看該作者
Riemann-Stieltjes Integral and Measurehapter, this problem leads to Volterra integral equations in two variables which can be handled largely as in the one-dimensional case; even consideration of such integral equations in an arbitrary number . of independent variables produces no new difficulties. A significant part of the present chapter is devoted to the development of this theory.
15#
發(fā)表于 2025-3-24 02:51:08 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:41 | 只看該作者
https://doi.org/10.1007/978-1-4899-4558-7hod, which puts . equations in the foreground. Then the concept of a classical solution is basic. In this case the differential equations and differential inequalities under consideration must be satisfied at . point (and not just almost everywhere).
17#
發(fā)表于 2025-3-24 11:08:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:27:40 | 只看該作者
19#
發(fā)表于 2025-3-24 19:11:56 | 只看該作者
20#
發(fā)表于 2025-3-25 01:02:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
原平市| 吉林省| 泽普县| 邹平县| 桂平市| 洪江市| 阿巴嘎旗| 垫江县| 古浪县| 望都县| 邵阳市| 永嘉县| 克什克腾旗| 屯昌县| 陕西省| 海口市| 汝州市| 确山县| 华容县| 成都市| 成安县| 吕梁市| 浮梁县| 昌吉市| 嫩江县| 正镶白旗| 柘荣县| 招远市| 吉木萨尔县| 平南县| 台东市| 福清市| 泽库县| 怀宁县| 信宜市| 古浪县| 庆阳市| 根河市| 田林县| 贡觉县| 孟连|