找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential and Difference Equations with Applications; ICDDEA, Amadora, Por Sandra Pinelas,Zuzana Do?lá,Peter E. Kloeden Conference proce

[復(fù)制鏈接]
樓主: 租期
51#
發(fā)表于 2025-3-30 10:32:33 | 只看該作者
52#
發(fā)表于 2025-3-30 16:03:54 | 只看該作者
53#
發(fā)表于 2025-3-30 19:17:03 | 只看該作者
54#
發(fā)表于 2025-3-30 23:26:27 | 只看該作者
55#
發(fā)表于 2025-3-31 04:39:09 | 只看該作者
,Algebraic Properties of the Semi-direct Product of Kac–Moody and Virasoro Lie Algebras and AssociatWe discuss the semi-direct product of Virasoro and affine Kac–Moody Lie algebras and associated Verma modules, coadjoint orbits, Casimir functions, and bi-Hamiltonian systems.
56#
發(fā)表于 2025-3-31 07:09:41 | 只看該作者
Complex-Valued Fractional Derivatives on Time Scales,We introduce a notion of fractional (noninteger order) derivative on an arbitrary nonempty closed subset of the real numbers (on a time scale). Main properties of the new operator are proved and several illustrative examples given.
57#
發(fā)表于 2025-3-31 09:44:37 | 只看該作者
,Existence of Mild Solutions for Impulsive Fractional Functional Differential Equations of Order , ∈This paper investigates the existence result for fractional order functional differential equations subject to non-instantaneous impulsive condition by applying the classical fixed point technique. At last, an example involving partial derivatives is presented to verify the uniqueness result.
58#
發(fā)表于 2025-3-31 16:14:25 | 只看該作者
59#
發(fā)表于 2025-3-31 18:01:53 | 只看該作者
Existence of the Mild Solutions for Nonlocal Fractional Differential Equations of Sobolev Type withfficient condition for providing the existence of mild solution to the nonlocal Sobolev-type fractional differential equation with iterated deviating arguments is obtained via technique of fixed-point theorems and analytic semigroup method. Finally, an example is given to explain the applicability of the abstract results developed.
60#
發(fā)表于 2025-3-31 23:23:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会昌县| 新津县| 武乡县| 汕尾市| 木里| 延津县| 德江县| 铜陵市| 游戏| 松阳县| 宁强县| 隆回县| 迁西县| 招远市| 晋宁县| 固镇县| 宿州市| 绿春县| 佛学| 太仆寺旗| 广东省| 延安市| 滦平县| 盘锦市| 同江市| 泰宁县| 宁津县| 广南县| 特克斯县| 调兵山市| 兰溪市| 许昌市| 都江堰市| 增城市| 临安市| 肥东县| 突泉县| 临猗县| 读书| 乌苏市| 湘西|