找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Topology and General Equilibrium with Complete and Incomplete Markets; Antonio Villanacci,Laura Carosi,Andrea Battinelli Book

[復制鏈接]
樓主: 他剪短
21#
發(fā)表于 2025-3-25 07:08:39 | 只看該作者
Restricted Participationinstitutional features (and not just the flavor of restricted participation) since it permits, for instance, modeling short sales bounds or market margin requirements. Of course, in principle such constraints should themselves be determined endogenously”..
22#
發(fā)表于 2025-3-25 07:59:48 | 只看該作者
23#
發(fā)表于 2025-3-25 11:44:05 | 只看該作者
Differential Topology and General Equilibrium with Complete and Incomplete Markets
24#
發(fā)表于 2025-3-25 17:32:51 | 只看該作者
Differential Topology and General Equilibrium with Complete and Incomplete Markets978-1-4757-3619-9
25#
發(fā)表于 2025-3-25 22:23:51 | 只看該作者
26#
發(fā)表于 2025-3-26 03:49:26 | 只看該作者
27#
發(fā)表于 2025-3-26 08:13:32 | 只看該作者
Differentials manifolds. As we argued in the introduction of Chapter 2, one of the main objects of elementary calculus is the representation of the local behavior of nonlinear functions mapping open subsets of ?. into ?. by means of their linear and higher order approximations. Similarly, one of the main purpose
28#
發(fā)表于 2025-3-26 08:28:32 | 只看該作者
Regular Valuesspaces, do not hold in full generality, but only under appropriate restrictions. For example, most, but not all, the level sets of a .. function exhibit a manifold structure (if they are not empty). The concept of regular value provides in this case the appropriate dividing line, as stated by the re
29#
發(fā)表于 2025-3-26 15:05:23 | 只看該作者
Manifolds with Boundary closed unit ball, a solid torus, a compact cylindrical surface. Those sets fail to be .. manifolds because of points they have on their “boundaries”. In fact, around those points they look like closed euclidean halfspaces or even convex cones. The definition of manifold with boundary deals with thi
30#
發(fā)表于 2025-3-26 20:16:51 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 03:32
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
肃南| 汾阳市| 福清市| 股票| 汪清县| 九台市| 岳普湖县| 波密县| 准格尔旗| 高阳县| 汤原县| 白银市| 从化市| 大英县| 福建省| 永仁县| 肇源县| 永川市| 富川| 当阳市| 晋中市| 西充县| 上饶县| 玉树县| 尉氏县| 大荔县| 肇东市| 竹山县| 罗平县| 霞浦县| 比如县| 视频| 金川县| 浪卡子县| 图片| 策勒县| 琼中| 娄烦县| 东海县| 定南县| 青田县|