找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Topology and General Equilibrium with Complete and Incomplete Markets; Antonio Villanacci,Laura Carosi,Andrea Battinelli Book

[復(fù)制鏈接]
樓主: 他剪短
21#
發(fā)表于 2025-3-25 07:08:39 | 只看該作者
Restricted Participationinstitutional features (and not just the flavor of restricted participation) since it permits, for instance, modeling short sales bounds or market margin requirements. Of course, in principle such constraints should themselves be determined endogenously”..
22#
發(fā)表于 2025-3-25 07:59:48 | 只看該作者
23#
發(fā)表于 2025-3-25 11:44:05 | 只看該作者
Differential Topology and General Equilibrium with Complete and Incomplete Markets
24#
發(fā)表于 2025-3-25 17:32:51 | 只看該作者
Differential Topology and General Equilibrium with Complete and Incomplete Markets978-1-4757-3619-9
25#
發(fā)表于 2025-3-25 22:23:51 | 只看該作者
26#
發(fā)表于 2025-3-26 03:49:26 | 只看該作者
27#
發(fā)表于 2025-3-26 08:13:32 | 只看該作者
Differentials manifolds. As we argued in the introduction of Chapter 2, one of the main objects of elementary calculus is the representation of the local behavior of nonlinear functions mapping open subsets of ?. into ?. by means of their linear and higher order approximations. Similarly, one of the main purpose
28#
發(fā)表于 2025-3-26 08:28:32 | 只看該作者
Regular Valuesspaces, do not hold in full generality, but only under appropriate restrictions. For example, most, but not all, the level sets of a .. function exhibit a manifold structure (if they are not empty). The concept of regular value provides in this case the appropriate dividing line, as stated by the re
29#
發(fā)表于 2025-3-26 15:05:23 | 只看該作者
Manifolds with Boundary closed unit ball, a solid torus, a compact cylindrical surface. Those sets fail to be .. manifolds because of points they have on their “boundaries”. In fact, around those points they look like closed euclidean halfspaces or even convex cones. The definition of manifold with boundary deals with thi
30#
發(fā)表于 2025-3-26 20:16:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金秀| 天门市| 永川市| 元朗区| 平南县| 包头市| 天水市| 会昌县| 彰化市| 英超| 大姚县| 乐都县| 信宜市| 海城市| 图木舒克市| 许昌县| 清苑县| 广南县| 上思县| 农安县| 本溪| 平和县| 房产| 广灵县| 大理市| 玉田县| 长泰县| 隆昌县| 邯郸市| 深州市| 赣榆县| 新安县| 沅陵县| 平远县| 商城县| 宜城市| 江西省| 北安市| 繁峙县| 澳门| 咸阳市|