找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Privacy and Applications; Tianqing Zhu,Gang Li,Philip S. Yu Book 2017 Springer International Publishing AG 2017 data analysis

[復(fù)制鏈接]
查看: 10084|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:22:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Differential Privacy and Applications
編輯Tianqing Zhu,Gang Li,Philip S. Yu
視頻videohttp://file.papertrans.cn/279/278789/278789.mp4
概述Presents differential privacy in a more comprehensive style.Provides detailed coverage on differential privacy in the perspective of engineering rather than computing theory.Includes examples on vario
叢書名稱Advances in Information Security
圖書封面Titlebook: Differential Privacy and Applications;  Tianqing Zhu,Gang Li,Philip S. Yu Book 2017 Springer International Publishing AG 2017 data analysis
描述.This book focuses on differential privacy and its application with an emphasis on technical and application aspects. This book also presents the most recent research on differential privacy with a theory perspective. It provides an approachable strategy for researchers and engineers to implement differential privacy in real world applications..Early chapters are focused on two major directions, differentially private data publishing and differentially private data analysis. Data publishing focuses on how to modify the original dataset or the queries with the guarantee of differential privacy. Privacy data analysis concentrates on how to modify the data analysis algorithm to satisfy differential privacy, while retaining a high mining accuracy. The authors also introduce several applications in real world applications, including recommender systems and location privacy. .Advanced level students in computer science and engineering, as well as researchers and professionals working in privacy preserving, data mining, machine learning and data analysis will find this book useful as a reference. Engineers in database, network security, social networks and web services will also find this
出版日期Book 2017
關(guān)鍵詞data analysis; data mining; data release; differential policy; location privacy; machine learning; privacy
版次1
doihttps://doi.org/10.1007/978-3-319-62004-6
isbn_softcover978-3-319-87211-7
isbn_ebook978-3-319-62004-6Series ISSN 1568-2633 Series E-ISSN 2512-2193
issn_series 1568-2633
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Differential Privacy and Applications影響因子(影響力)




書目名稱Differential Privacy and Applications影響因子(影響力)學(xué)科排名




書目名稱Differential Privacy and Applications網(wǎng)絡(luò)公開度




書目名稱Differential Privacy and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Differential Privacy and Applications被引頻次




書目名稱Differential Privacy and Applications被引頻次學(xué)科排名




書目名稱Differential Privacy and Applications年度引用




書目名稱Differential Privacy and Applications年度引用學(xué)科排名




書目名稱Differential Privacy and Applications讀者反饋




書目名稱Differential Privacy and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:34 | 只看該作者
https://doi.org/10.1007/978-3-031-56188-7 bound or sample complexity. But private learning frameworks can only deal with limited learning algorithms, while nearly all types of analysis algorithms can be implemented in a Laplace/exponential framework.
板凳
發(fā)表于 2025-3-22 01:13:24 | 只看該作者
地板
發(fā)表于 2025-3-22 05:06:11 | 只看該作者
Lisa Wiebesiek,Relebohile Moletsaner of queries is limited, as a large volume of noise will be introduced when the number of queries increases. A method called graph update method is then presented in this chapter to solve this serious problem. The key idea of the method is to transfer the query release problem into an iteration proc
5#
發(fā)表于 2025-3-22 10:56:05 | 只看該作者
Alexandra Budke,Kimberley Hindmarshms and utilize differential privacy to prevent the leaking of private information when releasing the dataset. A private tagging release algorithm is presented in this chapter to provide comprehensive privacy-preserving capability for individuals and maximizing the utility of the released dataset. Th
6#
發(fā)表于 2025-3-22 14:01:10 | 只看該作者
7#
發(fā)表于 2025-3-22 20:15:43 | 只看該作者
8#
發(fā)表于 2025-3-22 22:19:05 | 只看該作者
9#
發(fā)表于 2025-3-23 03:23:46 | 只看該作者
10#
發(fā)表于 2025-3-23 08:26:57 | 只看該作者
Differentially Private Deep Learning,uted Private SGD. Each of them is focusing on a particular deep learning algorithm and is dealing with those two challenges in different ways. Finally, this chapter shows several popular datasets that can be used in differentially private deep learning.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旺苍县| 张家口市| 方山县| 于田县| 犍为县| 灵宝市| 耿马| 阿拉善盟| 桃源县| 岗巴县| 曲沃县| 汝阳县| 崇阳县| 阳山县| 县级市| 布尔津县| 新营市| 饶阳县| 临江市| 呼玛县| 清丰县| 介休市| 商城县| 长白| 会同县| 东城区| 舟山市| 建湖县| 宜城市| 黔东| 久治县| 上杭县| 正阳县| 资源县| 和政县| 昌图县| 灵璧县| 武义县| 桦川县| 上高县| 蒙城县|