找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Inclusions; Set-Valued Maps and Jean-Pierre Aubin,Arrigo Cellina Book 1984 Springer-Verlag Berlin Heidelberg 1984 Kontingentg

[復(fù)制鏈接]
樓主: GERD847
21#
發(fā)表于 2025-3-25 06:35:47 | 只看該作者
22#
發(fā)表于 2025-3-25 10:10:24 | 只看該作者
Applied Innovation and Technology Managementsary and sufficient when . has convex values for the differential inclusion . to have viable trajectories for all initial states . in ., is also a sufficient condition for . to have an equilibrium state . in ..
23#
發(fā)表于 2025-3-25 14:25:15 | 只看該作者
https://doi.org/10.1007/978-94-6209-314-0proof (and without the assumption of completeness of .) in Choquet [1948]. For the history of the concepts of continuity of set valued maps we refer to the forthcoming book by Rockafellar and Wets. For Theorem 2.2 we refer to the book by Spanier [1966]. Proposition 2.2 is taken from Aubin [1979c], w
24#
發(fā)表于 2025-3-25 16:56:10 | 只看該作者
25#
發(fā)表于 2025-3-25 20:43:26 | 只看該作者
26#
發(fā)表于 2025-3-26 03:16:55 | 只看該作者
Comments,hile Proposition 2.3 comes from the book by Ekeland and Teman [1974]. Theorems 2.4 and 2.5 are well known theorems from Berge [1959]. The important results of Section 3 were obtained independently by Robinson [1976a] and Ursescu [1975].
27#
發(fā)表于 2025-3-26 06:14:41 | 只看該作者
Introduction,(.) (the “controls”). Indeed, if we introduce the set-valued map. then solutions to the differential equations (*) are solutions to the “differential inclusion” . in which the controls do not appear explicitely.
28#
發(fā)表于 2025-3-26 08:58:49 | 只看該作者
29#
發(fā)表于 2025-3-26 14:18:27 | 只看該作者
30#
發(fā)表于 2025-3-26 17:35:40 | 只看該作者
Maximum-Norm Stability and Error Estimates,and their consequences for error bounds for problems with smooth and nonsmooth initial data. The proofs of the stability estimates are considerably more complicated than for those in the ..-norm of our earlier chapters, and will be carried out by a weighted norm technique. For the error estimates we
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邛崃市| 攀枝花市| 大城县| 宝山区| 仙游县| 长乐市| 阿瓦提县| 黑河市| 贺州市| 屏边| 黄骅市| 抚宁县| 名山县| 桂平市| 抚远县| 凤翔县| 诸暨市| 迭部县| 怀宁县| 波密县| 文登市| 纳雍县| 高平市| 舞阳县| 八宿县| 绥化市| 贵溪市| 耒阳市| 陇川县| 北辰区| 和林格尔县| 广汉市| 康定县| 浦县| 丰顺县| 邻水| 黔江区| 什邡市| 阜宁县| 昌平区| 泾川县|