找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Inclusions; Set-Valued Maps and Jean-Pierre Aubin,Arrigo Cellina Book 1984 Springer-Verlag Berlin Heidelberg 1984 Kontingentg

[復制鏈接]
樓主: GERD847
21#
發(fā)表于 2025-3-25 06:35:47 | 只看該作者
22#
發(fā)表于 2025-3-25 10:10:24 | 只看該作者
Applied Innovation and Technology Managementsary and sufficient when . has convex values for the differential inclusion . to have viable trajectories for all initial states . in ., is also a sufficient condition for . to have an equilibrium state . in ..
23#
發(fā)表于 2025-3-25 14:25:15 | 只看該作者
https://doi.org/10.1007/978-94-6209-314-0proof (and without the assumption of completeness of .) in Choquet [1948]. For the history of the concepts of continuity of set valued maps we refer to the forthcoming book by Rockafellar and Wets. For Theorem 2.2 we refer to the book by Spanier [1966]. Proposition 2.2 is taken from Aubin [1979c], w
24#
發(fā)表于 2025-3-25 16:56:10 | 只看該作者
25#
發(fā)表于 2025-3-25 20:43:26 | 只看該作者
26#
發(fā)表于 2025-3-26 03:16:55 | 只看該作者
Comments,hile Proposition 2.3 comes from the book by Ekeland and Teman [1974]. Theorems 2.4 and 2.5 are well known theorems from Berge [1959]. The important results of Section 3 were obtained independently by Robinson [1976a] and Ursescu [1975].
27#
發(fā)表于 2025-3-26 06:14:41 | 只看該作者
Introduction,(.) (the “controls”). Indeed, if we introduce the set-valued map. then solutions to the differential equations (*) are solutions to the “differential inclusion” . in which the controls do not appear explicitely.
28#
發(fā)表于 2025-3-26 08:58:49 | 只看該作者
29#
發(fā)表于 2025-3-26 14:18:27 | 只看該作者
30#
發(fā)表于 2025-3-26 17:35:40 | 只看該作者
Maximum-Norm Stability and Error Estimates,and their consequences for error bounds for problems with smooth and nonsmooth initial data. The proofs of the stability estimates are considerably more complicated than for those in the ..-norm of our earlier chapters, and will be carried out by a weighted norm technique. For the error estimates we
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巫溪县| 湘潭市| 蛟河市| 高碑店市| 北川| 宿州市| 萨迦县| 延安市| 沽源县| 迁西县| 棋牌| 台中县| 呼图壁县| 肇东市| 迁安市| 儋州市| 东城区| 三明市| 额敏县| 宁远县| 五原县| 施秉县| 稷山县| 永顺县| 弥勒县| 敖汉旗| 日照市| 白银市| 莱芜市| 八宿县| 社会| 松滋市| 石阡县| 航空| 女性| 石阡县| 崇义县| 博兴县| 南平市| 胶南市| 怀柔区|