找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Inclusions; Set-Valued Maps and Jean-Pierre Aubin,Arrigo Cellina Book 1984 Springer-Verlag Berlin Heidelberg 1984 Kontingentg

[復制鏈接]
樓主: GERD847
21#
發(fā)表于 2025-3-25 06:35:47 | 只看該作者
22#
發(fā)表于 2025-3-25 10:10:24 | 只看該作者
Applied Innovation and Technology Managementsary and sufficient when . has convex values for the differential inclusion . to have viable trajectories for all initial states . in ., is also a sufficient condition for . to have an equilibrium state . in ..
23#
發(fā)表于 2025-3-25 14:25:15 | 只看該作者
https://doi.org/10.1007/978-94-6209-314-0proof (and without the assumption of completeness of .) in Choquet [1948]. For the history of the concepts of continuity of set valued maps we refer to the forthcoming book by Rockafellar and Wets. For Theorem 2.2 we refer to the book by Spanier [1966]. Proposition 2.2 is taken from Aubin [1979c], w
24#
發(fā)表于 2025-3-25 16:56:10 | 只看該作者
25#
發(fā)表于 2025-3-25 20:43:26 | 只看該作者
26#
發(fā)表于 2025-3-26 03:16:55 | 只看該作者
Comments,hile Proposition 2.3 comes from the book by Ekeland and Teman [1974]. Theorems 2.4 and 2.5 are well known theorems from Berge [1959]. The important results of Section 3 were obtained independently by Robinson [1976a] and Ursescu [1975].
27#
發(fā)表于 2025-3-26 06:14:41 | 只看該作者
Introduction,(.) (the “controls”). Indeed, if we introduce the set-valued map. then solutions to the differential equations (*) are solutions to the “differential inclusion” . in which the controls do not appear explicitely.
28#
發(fā)表于 2025-3-26 08:58:49 | 只看該作者
29#
發(fā)表于 2025-3-26 14:18:27 | 只看該作者
30#
發(fā)表于 2025-3-26 17:35:40 | 只看該作者
Maximum-Norm Stability and Error Estimates,and their consequences for error bounds for problems with smooth and nonsmooth initial data. The proofs of the stability estimates are considerably more complicated than for those in the ..-norm of our earlier chapters, and will be carried out by a weighted norm technique. For the error estimates we
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南和县| 治县。| 霍城县| 延寿县| 布尔津县| 临泽县| 修武县| 长宁区| 四平市| 廊坊市| 璧山县| 蒲江县| 唐河县| 南平市| 海兴县| 福贡县| 安阳县| 姚安县| 合川市| 东乡族自治县| 高邮市| 招远市| 白城市| 隆化县| 敦化市| 昌吉市| 香港| 和硕县| 青冈县| 井陉县| 龙南县| 天峨县| 东台市| 九龙坡区| 咸丰县| 德惠市| 吉首市| 特克斯县| 南召县| 双桥区| 旬阳县|