找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry of Varieties with Degenerate Gauss Maps; Maks A. Akivis,Vladislav V. Goldberg Textbook 2004 Springer-Verlag New York

[復(fù)制鏈接]
樓主: Suture
21#
發(fā)表于 2025-3-25 07:07:47 | 只看該作者
1613-5237 the main methods of differential geometry, namely, the methods of moving frames and exterior differential forms as well as tensor methods. By means of these methods, the authors discover the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, fin
22#
發(fā)表于 2025-3-25 07:43:43 | 只看該作者
23#
發(fā)表于 2025-3-25 12:01:04 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:23 | 只看該作者
Wie der Schall soziale R?ume schafftauss maps without singularities, in Section 3.4, we introduce and investigate an important class of varieties with degenerate Gauss maps without singularities, the so-called Sacksteder-Bourgain hypersurface, in the affine space A., and in Section 3.5, we consider complete parabolic varieties in Riemannian spaces of constant curvature.
25#
發(fā)表于 2025-3-25 22:14:22 | 只看該作者
26#
發(fā)表于 2025-3-26 00:43:34 | 只看該作者
Foundational Material,we consider the main topics associated with differentiable manifolds: tangent spaces, frame bundles, mappings, exterior differential calculus, Cartan’s lemma, completely integrable systems, the Frobenius theorem, Cartan’s test for a system in involution, the structure equations of a differentiable m
27#
發(fā)表于 2025-3-26 07:55:32 | 只看該作者
Varieties in Projective Spaces and Their Gauss Maps,ntal tensor and the second fundamental form, and the asymptotic lines and asymptotic cone) associated with a variety in a projective space ?., in Section 2.3, we define the rank of a variety and varieties with degenerate Gauss maps. In Section 2.4, we consider the main examples of varieties with deg
28#
發(fā)表于 2025-3-26 08:38:16 | 只看該作者
29#
發(fā)表于 2025-3-26 16:22:31 | 只看該作者
30#
發(fā)表于 2025-3-26 16:48:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
应用必备| 西充县| 彝良县| 松溪县| 五常市| 阿克苏市| 内乡县| 馆陶县| 玉溪市| 定州市| 鸡西市| 临邑县| 阳新县| 汶川县| 黄平县| 凌源市| 张家口市| 颍上县| 滨州市| 即墨市| 黄平县| 寿光市| 肇州县| 边坝县| 固始县| 准格尔旗| 阿鲁科尔沁旗| 苍南县| 铜川市| 花莲市| 谢通门县| 安阳县| 石台县| 阿克| 普格县| 抚顺县| 白山市| 运城市| 洪湖市| 社会| 开化县|