找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry of Lightlike Submanifolds; Krishan L. Duggal,Bayram Sahin Book 2010 Birkh?user Basel 2010 Semi-Riemannian geometry.d

[復(fù)制鏈接]
查看: 42797|回復(fù): 46
樓主
發(fā)表于 2025-3-21 19:45:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Differential Geometry of Lightlike Submanifolds
編輯Krishan L. Duggal,Bayram Sahin
視頻videohttp://file.papertrans.cn/279/278767/278767.mp4
概述There does not exist any other book covering the material presented in this volume. This makes the book a uniquely comprehensive work in the field.This is the first book which contains unique existenc
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: Differential Geometry of Lightlike Submanifolds;  Krishan L. Duggal,Bayram Sahin Book 2010 Birkh?user Basel 2010 Semi-Riemannian geometry.d
描述.This is the first systematic account of the main results in the theory of lightlike submanifolds of semi-Riemannian manifolds which have a geometric structure, such as almost Hermitian, almost contact metric or quaternion K?hler. Using these structures, the book presents interesting classes of submanifolds whose geometry is very rich. ..The book also includes hypersurfaces of semi-Riemannian manifolds, their use in general relativity and Osserman geometry, half-lightlike submanifolds of semi-Riemannian manifolds, lightlike submersions, screen conformal submersions, and their applications in harmonic maps. ..Basic constructions and definitions are presented as preliminary background in every chapter. The presentation explores applications and suggests several open questions. ..This self-contained monograph provides up-to-date research in lightlike geometry and is intended for graduate students and researchers just entering this field..
出版日期Book 2010
關(guān)鍵詞Semi-Riemannian geometry; differential geometry; manifold; mathematical physics; submanifold
版次1
doihttps://doi.org/10.1007/978-3-0346-0251-8
isbn_softcover978-3-0346-0250-1
isbn_ebook978-3-0346-0251-8Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightBirkh?user Basel 2010
The information of publication is updating

書目名稱Differential Geometry of Lightlike Submanifolds影響因子(影響力)




書目名稱Differential Geometry of Lightlike Submanifolds影響因子(影響力)學(xué)科排名




書目名稱Differential Geometry of Lightlike Submanifolds網(wǎng)絡(luò)公開(kāi)度




書目名稱Differential Geometry of Lightlike Submanifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Differential Geometry of Lightlike Submanifolds被引頻次




書目名稱Differential Geometry of Lightlike Submanifolds被引頻次學(xué)科排名




書目名稱Differential Geometry of Lightlike Submanifolds年度引用




書目名稱Differential Geometry of Lightlike Submanifolds年度引用學(xué)科排名




書目名稱Differential Geometry of Lightlike Submanifolds讀者反饋




書目名稱Differential Geometry of Lightlike Submanifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:01:20 | 只看該作者
Lightlike hypersurfaces,from the point of physics lightlike hypersurfaces are of importance as they are models of various types of horizons, such as Killing, dynamical and conformal horizons, studied in general relativity (see some details in Chapter 3). However, due to the degenerate metric of a lightlike submanifold ., o
板凳
發(fā)表于 2025-3-22 02:18:29 | 只看該作者
地板
發(fā)表于 2025-3-22 05:58:13 | 只看該作者
,Submanifolds of indefinite K?hler manifolds,degenerate case [45, 133 373], CR-lightlike submanifolds are non-trivial (i.e., they do not include invariant (complex) and real parts). Since then considerable work has been done on new concepts to obtain a variety of classes of lightlike submanifolds. In this chapter we present up-to-date new resu
5#
發(fā)表于 2025-3-22 09:40:58 | 只看該作者
6#
發(fā)表于 2025-3-22 15:57:12 | 只看該作者
,Submanifolds of indefinite quaternion K?hler manifolds,nion K?ahler manifolds. We study the geometry of real lightlike hypersurfaces, the structure of lightlike submanifolds, both, of indefinite quaternion K?hler manifolds and show that a quaternion lightlike submanifold is always totally geodesic. This result implies that the study of lightlike submani
7#
發(fā)表于 2025-3-22 20:08:48 | 只看該作者
8#
發(fā)表于 2025-3-22 22:50:22 | 只看該作者
Rationalit?ten des KinderschutzesThe objective of this chapter is to present an up-to-date account of the works published on the general theory of lightlike submanifolds of semi-Riemannian manifolds. This includes unique existence theorems for screen distributions, geometry of totally umbilical, minimal and warped product lightlike submanifolds.
9#
發(fā)表于 2025-3-23 04:29:33 | 只看該作者
A: Aanleiding of Activerende GebeurtenisIn this chapter we present applications of lightlike geometry in the study of null 2-surfaces in spacetimes, lightlike versions of harmonic maps and morphisms, CRstructures in general relativity and lightlike contact geometry in physics.
10#
發(fā)表于 2025-3-23 06:38:09 | 只看該作者
Half-lightlike submanifolds,There are two cases of codimension 2 lightlike submanifolds M since for this type the dimension of their radical distribution Rad. is either one or two. A codimension 2 lightlike submanifold is called half-lightlike [147] if dim(Rad .)=1. The objective of this chapter is to present up-to-date results of this sub-case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠州市| 霸州市| 墨竹工卡县| 咸宁市| 霍城县| 班玛县| 灵宝市| 石家庄市| 河北区| 定日县| 宣恩县| 灌南县| 兰溪市| 临沧市| 德清县| 乌鲁木齐县| 清远市| 巴林右旗| 永靖县| 濉溪县| 通渭县| 城步| 安丘市| 墨脱县| 绥化市| 永顺县| 洱源县| 芜湖市| 云浮市| 华容县| 册亨县| 罗源县| 防城港市| 白银市| 肇东市| 宿松县| 东辽县| 沭阳县| 若羌县| 彰化市| 阿合奇县|