找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry of Curves and Surfaces; Shoshichi Kobayashi Textbook 2019 Springer Nature Singapore Pte Ltd. 2019 curves.surfaces.cu

[復(fù)制鏈接]
查看: 13651|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:46:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Differential Geometry of Curves and Surfaces
編輯Shoshichi Kobayashi
視頻videohttp://file.papertrans.cn/279/278763/278763.mp4
概述Is the long-awaited English translation of Kobayashi’s classic on differential geometry, acclaimed in Japan as an excellent undergraduate text.Focuses on curves and surfaces in 3-dimensional Euclidean
叢書名稱Springer Undergraduate Mathematics Series
圖書封面Titlebook: Differential Geometry of Curves and Surfaces;  Shoshichi Kobayashi Textbook 2019 Springer Nature Singapore Pte Ltd. 2019 curves.surfaces.cu
描述.This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. ..There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss–Bonnet Theorem; and 5. Minimal Surfaces. ..Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures — the Gaussian curvature .K.?and the mean curvature .H. —are introduced. ?The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. ?In Chapter 3,?the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain.? Then the Gauss–Bonnet. .theorem, the ma
出版日期Textbook 2019
關(guān)鍵詞curves; surfaces; curvature; Riemannian metric; Gauss--Bonnet‘s theorem; minimal surfaces
版次1
doihttps://doi.org/10.1007/978-981-15-1739-6
isbn_softcover978-981-15-1738-9
isbn_ebook978-981-15-1739-6Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Differential Geometry of Curves and Surfaces影響因子(影響力)




書目名稱Differential Geometry of Curves and Surfaces影響因子(影響力)學(xué)科排名




書目名稱Differential Geometry of Curves and Surfaces網(wǎng)絡(luò)公開度




書目名稱Differential Geometry of Curves and Surfaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Differential Geometry of Curves and Surfaces被引頻次




書目名稱Differential Geometry of Curves and Surfaces被引頻次學(xué)科排名




書目名稱Differential Geometry of Curves and Surfaces年度引用




書目名稱Differential Geometry of Curves and Surfaces年度引用學(xué)科排名




書目名稱Differential Geometry of Curves and Surfaces讀者反饋




書目名稱Differential Geometry of Curves and Surfaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:36 | 只看該作者
1615-2085 ensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain.? Then the Gauss–Bonnet. .theorem, the ma978-981-15-1738-9978-981-15-1739-6Series ISSN 1615-2085 Series E-ISSN 2197-4144
板凳
發(fā)表于 2025-3-22 01:28:30 | 只看該作者
Correction to: Differential Geometry of Curves and Surfaces,
地板
發(fā)表于 2025-3-22 06:15:52 | 只看該作者
Shoshichi KobayashiIs the long-awaited English translation of Kobayashi’s classic on differential geometry, acclaimed in Japan as an excellent undergraduate text.Focuses on curves and surfaces in 3-dimensional Euclidean
5#
發(fā)表于 2025-3-22 09:20:48 | 只看該作者
6#
發(fā)表于 2025-3-22 16:11:03 | 只看該作者
7#
發(fā)表于 2025-3-22 18:39:50 | 只看該作者
Arbeitszeit- und Schichtsystemgestaltungnction theory in this chapter. We may say that the interest of minimal surfaces lies in relation with complex function theory. In Sect. . of Chap. . we gave some problems about classical minimal surfaces. The aim of this chapter is to study much more about these surfaces. We do not mention at all qu
8#
發(fā)表于 2025-3-22 21:25:45 | 只看該作者
9#
發(fā)表于 2025-3-23 04:01:29 | 只看該作者
Macht, Disziplin und Gesellschaft function . = .(.), for example . = ., is also a curve. Both . = . (.) and . = .(.) have one of the variables as an independent variable, and the other as a dependent variable. So . and y are not equally treated. If we rewrite these in the form . – . (.) = 0 or .(.) = 0, we can unify them in the form.
10#
發(fā)表于 2025-3-23 08:20:22 | 只看該作者
Plane Curves and Space Curves, function . = .(.), for example . = ., is also a curve. Both . = . (.) and . = .(.) have one of the variables as an independent variable, and the other as a dependent variable. So . and y are not equally treated. If we rewrite these in the form . – . (.) = 0 or .(.) = 0, we can unify them in the form.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浪卡子县| 东莞市| 隆林| 大石桥市| 台中市| 阜新| 丹巴县| 崇州市| 醴陵市| 宁陵县| 炉霍县| 扎鲁特旗| 永和县| 锦屏县| 张家界市| 全南县| 台北县| 上杭县| 伊宁县| 舒城县| 武鸣县| 忻州市| 深圳市| 灵武市| 珲春市| 堆龙德庆县| 蒲城县| 通榆县| 阿城市| 临海市| 金堂县| 虞城县| 漯河市| 苍南县| 黄平县| 谷城县| 大埔县| 崇左市| 平南县| 东海县| 财经|