找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Mathematical Physics; Part I. Manifolds, L Gerd Rudolph,Matthias Schmidt Book 2013 Springer Science+Business Medi

[復(fù)制鏈接]
查看: 29135|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:27:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Differential Geometry and Mathematical Physics
副標(biāo)題Part I. Manifolds, L
編輯Gerd Rudolph,Matthias Schmidt
視頻videohttp://file.papertrans.cn/279/278757/278757.mp4
概述Provides profound yet compact knowledge in manifolds, tensor fields, differential forms, Lie groups, G-manifolds and symplectic algebra and geometry for theoretical physicists.Prepares the reader to a
叢書名稱Theoretical and Mathematical Physics
圖書封面Titlebook: Differential Geometry and Mathematical Physics; Part I. Manifolds, L Gerd Rudolph,Matthias Schmidt Book 2013 Springer Science+Business Medi
描述.Starting from an undergraduate level, this book systematically develops the basics of.? .Calculus on manifolds, vector bundles, vector fields and differential forms,.? .Lie groups and Lie group actions,.? .Linear symplectic algebra and symplectic geometry,.? .Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory..The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics..The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact..
出版日期Book 2013
關(guān)鍵詞Analysis on Manifolds; Differential Geometry Applied; Hamilton-Jacobi Theory; Hamiltonian Systems; Integ
版次1
doihttps://doi.org/10.1007/978-94-007-5345-7
isbn_softcover978-94-017-8198-5
isbn_ebook978-94-007-5345-7Series ISSN 1864-5879 Series E-ISSN 1864-5887
issn_series 1864-5879
copyrightSpringer Science+Business Media Dordrecht 2013
The information of publication is updating

書目名稱Differential Geometry and Mathematical Physics影響因子(影響力)




書目名稱Differential Geometry and Mathematical Physics影響因子(影響力)學(xué)科排名




書目名稱Differential Geometry and Mathematical Physics網(wǎng)絡(luò)公開度




書目名稱Differential Geometry and Mathematical Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Differential Geometry and Mathematical Physics被引頻次




書目名稱Differential Geometry and Mathematical Physics被引頻次學(xué)科排名




書目名稱Differential Geometry and Mathematical Physics年度引用




書目名稱Differential Geometry and Mathematical Physics年度引用學(xué)科排名




書目名稱Differential Geometry and Mathematical Physics讀者反饋




書目名稱Differential Geometry and Mathematical Physics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:54:31 | 只看該作者
Vector Bundles,n physical models may be viewed in a coordinate-free manner as sections of certain vector bundles. We start by observing that the tangent spaces of a manifold combine in a natural way into what is called the tangent bundle. By taking the properties of the tangent bundle as axioms, we arrive at the n
板凳
發(fā)表于 2025-3-22 02:17:02 | 只看該作者
Vector Fields,gebra of smooth functions, discuss the notions of integral curve and flow, introduce the Lie derivative and give a brief account to time-dependent vector fields. Thereafter, we give an introduction to (geometric) distributions, i.e., subsets of the tangent bundle which are locally spanned by vector
地板
發(fā)表于 2025-3-22 07:23:26 | 只看該作者
Differential Forms,he theory of integration and the Stokes Theorem, as well as an introduction to de Rham cohomology. Next, we discuss elements of Riemannian geometry and Hodge duality. As an application, we show how classical Maxwell electrodynamics can be understood in a coordinate-free way using the language of dif
5#
發(fā)表于 2025-3-22 10:41:35 | 只看該作者
Lie Groups,lassical groups. Thereafter, we discuss left-invariant vector fields, define the Lie algebra of a Lie group and construct the exponential mapping, which provides a local diffeomorphism between the group and its algebra. This proves useful both for the study of the local structure of Lie groups and f
6#
發(fā)表于 2025-3-22 15:54:23 | 只看該作者
Lie Group Actions,fields of a special type, called Killing vector fields. We prove the Orbit Theorem, which states that the distribution spanned by the Killing vector fields is integrable and that its integral manifolds coincide with the connected components of the orbits of the action. This way, every orbit gets end
7#
發(fā)表于 2025-3-22 20:37:58 | 只看該作者
Linear Symplectic Algebra,mplectic geometry provides the natural mathematical framework for the study of Hamiltonian systems. In this chapter, we present linear symplectic algebra. We start with a discussion of the elementary properties of symplectic vector spaces, the various types of their subspaces and linear symplectic r
8#
發(fā)表于 2025-3-22 22:30:46 | 只看該作者
Symplectic Geometry, are locally equivalent. Thus, in sharp contrast to the situation in Riemannian geometry, symplectic manifolds of the same dimension can at most differ globally. The second important observation is that a symplectic structure provides a duality between smooth functions and certain vector fields, cal
9#
發(fā)表于 2025-3-23 01:32:03 | 只看該作者
10#
發(fā)表于 2025-3-23 05:48:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中卫市| 磐石市| 麻阳| 阿拉善盟| 剑川县| 慈利县| 和平区| 乌海市| 崇信县| 和龙市| 屏南县| 江口县| 定州市| 靖宇县| 长宁区| 韩城市| 松潘县| 本溪市| 黄山市| 水城县| 资阳市| 洛宁县| 临猗县| 聂拉木县| 临武县| 黄浦区| 遵义县| 正定县| 江永县| 柯坪县| 尉犁县| 承德市| 神农架林区| 简阳市| 泸西县| 固阳县| 延吉市| 怀远县| 青神县| 晋宁县| 清水县|