找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Mathematical Physics; Lectures given at th M. Cahen,M. Wilde,L. Vanhecke Book 1983 D. Reidel Publishing Company,

[復(fù)制鏈接]
樓主: 故障
21#
發(fā)表于 2025-3-25 04:07:29 | 只看該作者
22#
發(fā)表于 2025-3-25 09:59:17 | 只看該作者
23#
發(fā)表于 2025-3-25 14:30:17 | 只看該作者
David Ben-Chaim,Yaffa Keret,Bat-Sheva IlanyLet (M,g) be an n-dimensional Riemannian manifold of class C. and let P be a q-dimensional submanifold of M. A (solid) tube of radius r about P is the set.where T.(P) denotes the normal space of P at the point m. For small r the set.is a smooth hypersurface which we also call a tube.
24#
發(fā)表于 2025-3-25 19:51:25 | 只看該作者
25#
發(fā)表于 2025-3-25 19:58:57 | 只看該作者
26#
發(fā)表于 2025-3-26 01:42:43 | 只看該作者
Heat, Cold and GeometryClassical and relativistic mechanics can be formulated in terms of symplectic geometry; this formulation leads to a rigorous statement of the principles of statistical mechanics and of thermodynamics.
27#
發(fā)表于 2025-3-26 06:32:13 | 只看該作者
Differential Deformations with Constant CoefficientsLet W be ?. and E(W,λ) be the space of formal series with coefficients in C. (W). A formal bi-differential operator P. is a bilinear map . with . where . is a usual bi-differential operator.
28#
發(fā)表于 2025-3-26 09:10:24 | 只看該作者
Some Aspects of Theoretical Physics Relating to Harmonic MapsLet (M,g) be a compact Riemannian manifold without boundary, and consider an action which, for simplicity, we suppose has the form., where Φ is a section of a Riemannian fiber bundle π: E → M, and L: J. (E) → . possibly depends on the metric of E.
29#
發(fā)表于 2025-3-26 13:04:11 | 只看該作者
30#
發(fā)表于 2025-3-26 17:35:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹿泉市| 苏尼特左旗| 潞城市| 张掖市| 马关县| 即墨市| 宿松县| 临安市| 达拉特旗| 长沙县| 临湘市| 平舆县| 诸城市| 利辛县| 镇宁| 华亭县| 汤原县| 霍城县| 衡南县| 永康市| 张掖市| 阳高县| 富宁县| 于田县| 杨浦区| 南溪县| 杭锦旗| 漳平市| 清远市| 英吉沙县| 石狮市| 庆元县| 泗阳县| 福安市| 嵊泗县| 阳泉市| 凤山市| 伊吾县| 灵寿县| 宁南县| 昌宁县|