找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Lie Groups; A Second Course Jean Gallier,Jocelyn Quaintance Textbook 2020 Springer Nature Switzerland AG 2020 Dif

[復(fù)制鏈接]
樓主: 手套
41#
發(fā)表于 2025-3-28 17:25:58 | 只看該作者
Introduction, prove many of the results presented in this book. Thus one need to have a solid understanding of differential forms, which turn out to be certain kinds of skew-symmetric (also called alternating) tensors. Differential forms have two main roles:
42#
發(fā)表于 2025-3-28 20:01:59 | 只看該作者
43#
發(fā)表于 2025-3-28 23:09:00 | 只看該作者
44#
發(fā)表于 2025-3-29 05:29:34 | 只看該作者
Integration on Manifolds, we explain how differential forms defined on an open subset of . are integrated. Then, if . is a smooth manifold of dimension ., and if . is an .-form on . (with compact support), the integral ∫.. is defined by patching together the integrals defined on small-enough open subsets covering . using a
45#
發(fā)表于 2025-3-29 08:00:56 | 只看該作者
46#
發(fā)表于 2025-3-29 11:37:50 | 只看該作者
Operators on Riemannian Manifolds: Hodge Laplacian, Laplace-Beltrami Laplacian, the Bochner Laplacifusion or wave propagation. Therefore, it is highly desirable to generalize the Laplacian to functions defined on a manifold. Furthermore, in the late 1930s, Georges de Rham (inspired by élie Cartan) realized that it was fruitful to define a version of the Laplacian operating on differential forms,
47#
發(fā)表于 2025-3-29 18:57:57 | 只看該作者
48#
發(fā)表于 2025-3-29 19:47:48 | 只看該作者
Clifford Algebras, Clifford Groups, and the Groups ,(,) and ,(,),ction of the unit complex numbers .(1) on . and the action of the unit quaternions .(2) on . (., the action is defined in terms of multiplication in a larger algebra containing both the group .(.) and .). The group .(.), called a ., is defined as a certain subgroup of units of an algebra Cl., the .
49#
發(fā)表于 2025-3-30 00:42:16 | 只看該作者
C. Jiménez,F. X. Niell,J. A. Fernándezmited clinical evidence showed that natural or artificial materials could be used as scaffolds for urethral repair. Urinary tissue engineering is still in the immature stage, and the safety, efficacy, and cost-effectiveness of scaffolds must be evaluated to allow further study.
50#
發(fā)表于 2025-3-30 06:26:07 | 只看該作者
Shahram Khazaei,Simon Fischer,Willi Meiers classical Maxwell theory with quantum theory of atoms, mol.This book consists of two parts. Part A (Chapters 1-3) is an introduction to the physics of conducting solids, while Part B (Chapters 4-10) is an introduction to the theory of electromagnetic fields and waves.?.The book is intended to intr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 20:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤壁市| 安溪县| 舒城县| 堆龙德庆县| 济阳县| 永兴县| 荣成市| 塘沽区| 九龙城区| 海门市| 融水| 东港市| 东乡县| 丹棱县| 同心县| 台安县| 融水| 思南县| 筠连县| 井冈山市| 徐州市| 修水县| 大港区| 德格县| 清河县| 湛江市| 额尔古纳市| 嵊州市| 古田县| 余江县| 铁岭县| 佛学| 简阳市| 婺源县| 福海县| 洛阳市| 清水河县| 嘉鱼县| 黔南| 昆山市| 平潭县|