找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Complex Analysis; A Volume Dedicated t Isaac Chavel,Hershel M. Farkas Book 1985 Springer-Verlag Berlin, Heidelber

[復(fù)制鏈接]
樓主: 雜技演員
51#
發(fā)表于 2025-3-30 09:06:05 | 只看該作者
52#
發(fā)表于 2025-3-30 15:06:18 | 只看該作者
53#
發(fā)表于 2025-3-30 17:45:45 | 只看該作者
An Integrability Condition for Simple Lie Groups,in parallelism and curvature properties which, when satisfied to a certain degree of approximation, delimit a general class of Riemannian manifolds with the same structure”. In addition, Rauch observed that these curvature properties can be viewed as the integrability condition of a certain set of p
54#
發(fā)表于 2025-3-30 21:04:40 | 只看該作者
55#
發(fā)表于 2025-3-31 02:34:11 | 只看該作者
On the Structure of Complete Manifolds with Positive Scalar Curvature,which are needed for his proof of the pinching theorem, are fundamental for later developments in Riemannian geometry. His work initiated a systematic research developed by Klingenberg, Berger, Gromoll, Meyer, Cheeger, Gromov, Ruh, Shio-hama, Karcher, etc. This work depends heavily on how a length-m
56#
發(fā)表于 2025-3-31 07:19:40 | 只看該作者
articles summarizing Rauch‘s own work in differential geometry, complex analysis and theta functions (ii) articles which would give the reader an idea of the depth and breadth of Rauch‘s researches, interests, and influence, in the fields he investigated, and (iii) articles of high scientific quali
57#
發(fā)表于 2025-3-31 09:44:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 16:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉门市| 公安县| 通江县| 逊克县| 苏尼特右旗| 四川省| 泸西县| 安多县| 新乡县| 大理市| 泾川县| 太和县| 阿荣旗| 黄大仙区| 冷水江市| 普兰店市| 靖西县| 监利县| 太和县| 同德县| 江达县| 萨迦县| 黄骅市| 田东县| 甘德县| 玉树县| 油尖旺区| 通许县| 凤凰县| 永德县| 伊川县| 永顺县| 贵溪市| 常德市| 体育| 门头沟区| 右玉县| 莲花县| 高安市| 宁都县| 连南|