找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry; From Elastic Curves Ulrich Pinkall,Oliver Gross Textbook‘‘‘‘‘‘‘‘ 2024 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
樓主: STRI
11#
發(fā)表于 2025-3-23 11:16:14 | 只看該作者
12#
發(fā)表于 2025-3-23 16:11:23 | 只看該作者
Manuel Posada de la Paz,Stephen C. GroftFor a curve ., global quantities like the length or the bending energy were defined as integrals over arclength of certain functions on ..
13#
發(fā)表于 2025-3-23 21:12:51 | 只看該作者
Bobbie Ann Austin,Ami D. GadhiaFrom this chapter on we will focus attention on surfaces .. The most fundamental tool for analysing such a surface is its unit normal field . which is a map to the unit sphere ..
14#
發(fā)表于 2025-3-24 00:57:00 | 只看該作者
15#
發(fā)表于 2025-3-24 05:06:28 | 只看該作者
New Therapeutic Uses for Existing DrugsIf we know a plane curve . near its end points, we know its total curvature . up to an integer multiple of ..
16#
發(fā)表于 2025-3-24 10:35:21 | 只看該作者
Bobbie Ann Austin,Ami D. GadhiaWe define a . as a surface . whose boundary components have been matched in pairs in such a way that . as well as its unit normal . are continuous across the boundary. This allows us to prove an analog of the fact that the tangent winding number of a closed plane curve is an integer.
17#
發(fā)表于 2025-3-24 14:29:03 | 只看該作者
18#
發(fā)表于 2025-3-24 14:58:22 | 只看該作者
Sylvie Grégoire,Norman Barton,David WhitemanThe analog for a surface . of the bending energy . is the ..
19#
發(fā)表于 2025-3-24 20:20:26 | 只看該作者
20#
發(fā)表于 2025-3-25 02:45:54 | 只看該作者
Variations of CurvesMany important special curves . arise by minimizing a certain variational energy ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乌| 无为县| 陕西省| 琼中| 龙胜| 定兴县| 贵溪市| 六盘水市| 高青县| 西宁市| 太谷县| 乐陵市| 贡山| 灵石县| 海淀区| 汉沽区| 南陵县| 九台市| 巴林右旗| 汉中市| 从江县| 临武县| 紫金县| 龙南县| 广宗县| 井陉县| 南阳市| 广州市| 麻城市| 鄂温| 股票| 朔州市| 永济市| 重庆市| 林口县| 沿河| 竹山县| 承德市| 特克斯县| 隆回县| 肥城市|