找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry; From Elastic Curves Ulrich Pinkall,Oliver Gross Textbook‘‘‘‘‘‘‘‘ 2024 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
樓主: STRI
11#
發(fā)表于 2025-3-23 11:16:14 | 只看該作者
12#
發(fā)表于 2025-3-23 16:11:23 | 只看該作者
Manuel Posada de la Paz,Stephen C. GroftFor a curve ., global quantities like the length or the bending energy were defined as integrals over arclength of certain functions on ..
13#
發(fā)表于 2025-3-23 21:12:51 | 只看該作者
Bobbie Ann Austin,Ami D. GadhiaFrom this chapter on we will focus attention on surfaces .. The most fundamental tool for analysing such a surface is its unit normal field . which is a map to the unit sphere ..
14#
發(fā)表于 2025-3-24 00:57:00 | 只看該作者
15#
發(fā)表于 2025-3-24 05:06:28 | 只看該作者
New Therapeutic Uses for Existing DrugsIf we know a plane curve . near its end points, we know its total curvature . up to an integer multiple of ..
16#
發(fā)表于 2025-3-24 10:35:21 | 只看該作者
Bobbie Ann Austin,Ami D. GadhiaWe define a . as a surface . whose boundary components have been matched in pairs in such a way that . as well as its unit normal . are continuous across the boundary. This allows us to prove an analog of the fact that the tangent winding number of a closed plane curve is an integer.
17#
發(fā)表于 2025-3-24 14:29:03 | 只看該作者
18#
發(fā)表于 2025-3-24 14:58:22 | 只看該作者
Sylvie Grégoire,Norman Barton,David WhitemanThe analog for a surface . of the bending energy . is the ..
19#
發(fā)表于 2025-3-24 20:20:26 | 只看該作者
20#
發(fā)表于 2025-3-25 02:45:54 | 只看該作者
Variations of CurvesMany important special curves . arise by minimizing a certain variational energy ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松桃| 黄石市| 阳山县| 卓尼县| 获嘉县| 定兴县| 惠州市| 电白县| 北京市| 旬阳县| 永宁县| 醴陵市| 安吉县| 大宁县| 南汇区| 云龙县| 台安县| 南郑县| 虎林市| 自贡市| 泊头市| 大新县| 无极县| 石首市| 望城县| 大冶市| 民权县| 乾安县| 光山县| 宁海县| 科技| 甘孜县| 阿瓦提县| 宝鸡市| 彰化市| 突泉县| 新民市| 密山市| 青河县| 时尚| 宜春市|