找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometric Methods in Theoretical Physics; Proceedings of the 1 C. Bartocci,U. Bruzzo,R. Cianci Conference proceedings 1991 Spr

[復(fù)制鏈接]
樓主: 候選人名單
21#
發(fā)表于 2025-3-25 05:10:03 | 只看該作者
Capture Problems For Coupled Random WalksThis talk reviews the basic definitions of Lie and Poisson groupoids and then proposes Lie Hopf Algebroids as a possible definition for “Quantum Groupoids” — objects which generalize quantum groups on the one hand, and have Poisson groupoids as their classical limits, on the other.
22#
發(fā)表于 2025-3-25 10:06:12 | 只看該作者
Theoretical and Mathematical PhysicsWe analyse the .. affine Toda field theory introduced elsewhere. In particular we study the chiral splitting of the theory and the relevant Drinfeld-Sokolov equations. We exhibit the chiral exchange algebra and the conformal properties of objects involved.
23#
發(fā)表于 2025-3-25 11:58:54 | 只看該作者
Some Limits of the Robustness Paradigm,We give a geometric description of some representations of the semidirect sum of the Virasoro and Kac-Moody algebras in terms of line bundles over the moduli stacks of stable vector bundles over smooth Riemann surfaces.
24#
發(fā)表于 2025-3-25 16:14:13 | 只看該作者
Tensor Operator Structures in Quantum Unitary Groups,Tensor operators acting on model spaces for the quantum group . are defined (“.-tensor operators”) and the fundamental theorem for .-tensor operators (a generalization to non-commutative co-products of the WignerEckart theorem) is proved. Examples from ..(2) are discussed.
25#
發(fā)表于 2025-3-25 20:42:19 | 只看該作者
26#
發(fā)表于 2025-3-26 00:23:29 | 只看該作者
From poisson groupoids to quantum groupoids and back,This talk reviews the basic definitions of Lie and Poisson groupoids and then proposes Lie Hopf Algebroids as a possible definition for “Quantum Groupoids” — objects which generalize quantum groups on the one hand, and have Poisson groupoids as their classical limits, on the other.
27#
發(fā)表于 2025-3-26 04:39:46 | 只看該作者
Exchange Algebra in the Conformal Affine ,, Toda Field Theory,We analyse the .. affine Toda field theory introduced elsewhere. In particular we study the chiral splitting of the theory and the relevant Drinfeld-Sokolov equations. We exhibit the chiral exchange algebra and the conformal properties of objects involved.
28#
發(fā)表于 2025-3-26 09:58:34 | 只看該作者
29#
發(fā)表于 2025-3-26 15:06:20 | 只看該作者
Differential Geometric Methods in Theoretical Physics978-3-540-47090-8Series ISSN 0075-8450 Series E-ISSN 1616-6361
30#
發(fā)表于 2025-3-26 18:20:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长垣县| 新竹市| 横峰县| 蒙自县| 潜江市| 宝鸡市| 榆林市| 华亭县| 恭城| 伊宁县| 定日县| 汉中市| 黔江区| 扶绥县| 昌邑市| 花莲县| 禹州市| 明星| 错那县| 镇江市| 楚雄市| 桦南县| 大邑县| 绥中县| 青神县| 泌阳县| 哈尔滨市| 丽江市| 本溪市| 长沙县| 兴义市| 阿城市| 桐柏县| 茶陵县| 黔江区| 长沙市| 名山县| 京山县| 中方县| 巨野县| 德安县|