找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometric Methods in Theoretical Physics; Physics and Geometry Ling-Lie Chau,Werner Nahm Book 1990 Springer Science+Business M

[復(fù)制鏈接]
樓主: interleukins
11#
發(fā)表于 2025-3-23 12:56:46 | 只看該作者
12#
發(fā)表于 2025-3-23 14:41:35 | 只看該作者
13#
發(fā)表于 2025-3-23 18:07:38 | 只看該作者
14#
發(fā)表于 2025-3-24 00:30:30 | 只看該作者
Geometric Structure of Lower ProbabilitiesThe null space structure of the parafermionic theory is studied. A Feigin-Fuchs representation with two bosons on a Lorenzian lattice is used. The null states are constructed as contour integrals of screening operators. The characters or the string functions for the parafermionic theory are derived from the null states.
15#
發(fā)表于 2025-3-24 02:57:28 | 只看該作者
16#
發(fā)表于 2025-3-24 07:55:48 | 只看該作者
Explicit Soliton-Generating B?cklund TransformationsSome 2-d nonlinear differential equations (NLDE) can be regarded as the integrability condition for certain linear systems. possessing a free spectral parameter λ: . where φ, U, V are all square matrix functions of x, t and λ, and U, V are rational functions of λ.
17#
發(fā)表于 2025-3-24 14:44:17 | 只看該作者
Quantization of the Chiral Solitonic Bag ModelA consistent quantization scheme for the two flavor chiral solitonic bag model with unequal quark masses is developed employing a propagator formulation.
18#
發(fā)表于 2025-3-24 18:41:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:16:52 | 只看該作者
Infinite Index EmbeddingsInfinite Index Embeddings are discussed in the framework of quantized space and its quantized symmetry groups.
20#
發(fā)表于 2025-3-24 23:32:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全椒县| 平南县| 高密市| 新龙县| 香格里拉县| 六枝特区| 阿克苏市| 昌图县| 宁武县| 合阳县| 安庆市| 汉源县| 长丰县| 武山县| 潼南县| 铜陵市| 同江市| 新源县| 永新县| 江北区| 苗栗县| 宣城市| 璧山县| 庆城县| 海盐县| 安宁市| 兰州市| 疏附县| 社会| 文成县| 垦利县| 湘乡市| 浦北县| 施秉县| 湾仔区| 嘉义市| 彰化市| 刚察县| 宜兰市| 德昌县| 平南县|