找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geodesy; Martin Hotine,Joseph Zund Book 1991 Springer-Verlag Berlin Heidelberg 1991 Geod?tische Koordinationsysteme.Hotine, M

[復(fù)制鏈接]
樓主: Strategy
31#
發(fā)表于 2025-3-26 23:14:48 | 只看該作者
32#
發(fā)表于 2025-3-27 04:02:27 | 只看該作者
https://doi.org/10.1007/978-1-4020-9132-2tudy Group No. 1 of the International Association of Geodesy (Toronto, 1957), viz. the adjustment of large triangulation networks “taking into account the form of the geoid”. The basic material theory contained in this paper shows that it is unnecessary for this purpose to know the form of the geoid at all.
33#
發(fā)表于 2025-3-27 05:21:02 | 只看該作者
34#
發(fā)表于 2025-3-27 11:54:25 | 只看該作者
35#
發(fā)表于 2025-3-27 15:20:36 | 只看該作者
Adjustment of Triangulation in Space,in the sense of being expressible in two Euclidian dimensions — we have, in the course of 2000 or more years, progressed to the stage of two non-Euclidian dimensions — but whenever a third dimension obtrudes, as in Nature it must, it is to be got rid of immediately by means of “corrections”, or simp
36#
發(fā)表于 2025-3-27 21:28:11 | 只看該作者
37#
發(fā)表于 2025-3-27 23:04:32 | 只看該作者
Geodetic Coordinate Systems,, y, z) within a certain region of flat 3-space. Other means of defining position (e.g. Square X 56, or “follow the normal to the spheroid as far as the geoid and thence along the line of force”) are better described as reference systems and are not considered here; they are not amenable to the ordi
38#
發(fā)表于 2025-3-28 04:34:38 | 只看該作者
A Primer of Non-Classical Geodesy,It is intended as a new approach to the basic mathematical theory of geodetic measurement, leading to rigorous methods of reduction and adjustment, unrestricted by the length of observed lines and suited to modern electronic computation. It is submitted as a complete answer to the problem posed to S
39#
發(fā)表于 2025-3-28 08:13:50 | 只看該作者
40#
發(fā)表于 2025-3-28 13:11:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元氏县| 体育| 丰城市| 平原县| 太和县| 新河县| 翁牛特旗| 凭祥市| 兴安盟| 北碚区| 仙桃市| 尚义县| 民权县| 隆昌县| 法库县| 黄石市| 南溪县| 隆林| 高州市| 边坝县| 磐石市| 灵宝市| 广州市| 济宁市| 湖北省| 五大连池市| 五家渠市| 富川| 丹江口市| 瓦房店市| 阜新市| 铜川市| 雅安市| 乌兰察布市| 梅州市| 阿瓦提县| 安溪县| 桂平市| 杭锦后旗| 丽水市| 周至县|