找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Forms and Applications; Manfredo P. Carmo Textbook 1994 Springer-Verlag Berlin Heidelberg 1994 Diferential forms.Differential

[復(fù)制鏈接]
樓主: 萬圣節(jié)
11#
發(fā)表于 2025-3-23 11:52:35 | 只看該作者
Differentiable Manifolds,Differential forms were introduced in the first chapter as objects in .; however, they, as everything else that refers to differentiability, live naturally in a differentiable manifold, a concept that we will develop presently.
12#
發(fā)表于 2025-3-23 14:59:11 | 只看該作者
,Integration on Manifolds; Stokes Theorem and Poincaré’s Lemma,In this section we will define the integral of a differential .-form on an .- dimensional differentiable manifold. We will start with the case of ..
13#
發(fā)表于 2025-3-23 21:33:51 | 只看該作者
Differential Geometry of Surfaces,We now apply our knowledge of differential forms to study some differential geometry. We start with a few definitions.
14#
發(fā)表于 2025-3-23 23:47:57 | 只看該作者
15#
發(fā)表于 2025-3-24 04:51:40 | 只看該作者
Differential Forms and Applications978-3-642-57951-6Series ISSN 0172-5939 Series E-ISSN 2191-6675
16#
發(fā)表于 2025-3-24 07:11:12 | 只看該作者
Recep Beki?,Berna Polack,Murat Fani Bozkurtpter 3). However, the special case of integration of forms of degree one along curves (the so called line integrals) is so simple that it can be treated independently of the general theory. We will do that in this chapter.
17#
發(fā)表于 2025-3-24 10:46:07 | 只看該作者
Line Integrals,pter 3). However, the special case of integration of forms of degree one along curves (the so called line integrals) is so simple that it can be treated independently of the general theory. We will do that in this chapter.
18#
發(fā)表于 2025-3-24 15:24:45 | 只看該作者
19#
發(fā)表于 2025-3-24 21:44:52 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:37 | 只看該作者
Recep Beki?,Berna Polack,Murat Fani Bozkurtpter 3). However, the special case of integration of forms of degree one along curves (the so called line integrals) is so simple that it can be treated independently of the general theory. We will do that in this chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康平县| 保亭| 京山县| 丹江口市| 潢川县| 宁海县| 万载县| 浑源县| 玛沁县| 谷城县| 化隆| 吉水县| 湾仔区| 广昌县| 广汉市| 铜山县| 留坝县| 葵青区| 偏关县| 吕梁市| 尉犁县| 昌平区| 通河县| 石景山区| 黎平县| 贵港市| 库尔勒市| 乌兰察布市| 济阳县| 铜陵市| 西林县| 濮阳市| 临澧县| 拉孜县| 阳春市| 陵水| 泗洪县| 松滋市| 赫章县| 新巴尔虎左旗| 尉氏县|