找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations, Mathematical Modeling and Computational Algorithms; DEMMCA 2021, Belgoro Vladimir Vasilyev Conference proceedings 2

[復(fù)制鏈接]
樓主: inroad
51#
發(fā)表于 2025-3-30 11:16:20 | 只看該作者
Renal Parenchymal and Inflammatory Diseasestor four theorems on local unique solvability are proved. Abstract results are illustrated by initial-boundary value problems for partial differential systems of equations with Gerasimov—Caputo derivatives in time.
52#
發(fā)表于 2025-3-30 14:15:41 | 只看該作者
Traumafolgen am Urogenitaltrakt ordinary differential equations. This paper offers a method for construction of piecewise-constant approximations that satisfy the given geometric control constraints. The approximations converge almost everywhere to the desired control, and the reconstructed trajectories of the dynamical system converge uniformly to the observed trajectory.
53#
發(fā)表于 2025-3-30 17:26:13 | 只看該作者
54#
發(fā)表于 2025-3-31 00:25:03 | 只看該作者
55#
發(fā)表于 2025-3-31 02:35:56 | 只看該作者
Conference proceedings 2023 Belgorod, Russia, in October 2021 and is devoted to various aspects of the theory of differential equations and their applications in various branches of science. Theoretical papers devoted to the qualitative analysis of emerging mathematical objects, theorems of the existence and uniqueness of sol
56#
發(fā)表于 2025-3-31 08:21:44 | 只看該作者
2194-1009 e International Conference on Differential Equations, Mathematical Modeling and Computational Algorithms, held in Belgorod, Russia, in October 2021 and is devoted to various aspects of the theory of differential equations and their applications in various branches of science. Theoretical papers devo
57#
發(fā)表于 2025-3-31 11:09:44 | 只看該作者
System for Reporting and Analysing Incidents the corresponding degenerate linear equation, which were obtained by authors earlier, are applied to the consideration of initial boundary value problems for linearized and nonlinear systems of partial differential equations with the Dzhrbashyan—Nersesyan time derivative, which describes the dynamics of viscoelastic fluids.
58#
發(fā)表于 2025-3-31 16:41:53 | 只看該作者
D. Mathis,P. Gosse,N. Grenier,H. Trillaudstem of two boundary integral equations with weakly and strongly singular integrals on a perfectly conducting surface. Finally, we construct a numerical method for the considered problem which based on solution of these integral equations.
59#
發(fā)表于 2025-3-31 18:00:45 | 只看該作者
L. Boyer,H. Rousseau,A. Raynaudntial and dissipative systems is shown. At the same time, the introduced force fields make the considered systems dissipative with dissipation of different signs and generalize the previously considered ones. We also represent the typical examples from rigid body dynamics.
60#
發(fā)表于 2025-3-31 23:22:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
如皋市| 綦江县| 临猗县| 湟源县| 青阳县| 兴隆县| 潞城市| 咸阳市| 惠水县| 河北区| 桃源县| 深州市| 遂溪县| 桃园县| 江孜县| 天全县| 柳林县| 南岸区| 色达县| 建阳市| 沧源| 顺昌县| 连云港市| 涟源市| 康乐县| 城市| 江永县| 曲靖市| 灵璧县| 田林县| 商河县| 嘉兴市| 揭东县| 平罗县| 阿拉善右旗| 宜城市| 固始县| 吴堡县| 贵州省| 望江县| 无为县|