找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations with Involutions; Alberto Cabada,F. Adrián F. Tojo Book 2015 Atlantis Press and the author(s) 2015 Differential Equ

[復制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 10:56:17 | 只看該作者
12#
發(fā)表于 2025-3-23 15:45:39 | 只看該作者
https://doi.org/10.1007/978-3-642-49762-9itrary differentiable involutions, to the one studied in Chap.?.. As we will see, we will do this in three steps. First we add a term depending on .(.) which does not change much with respect to the previous situations. Then, moving from the reflection to a general involution is fairly simple using
13#
發(fā)表于 2025-3-23 18:04:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:55 | 只看該作者
https://doi.org/10.1007/978-3-642-49762-9This chapter is devoted to those results related to differential equations with reflection not directly associated with Green’s functions. The proofs of the results can be found in the bibliography cited for each case. We will not enter into detail with these results, but we summarize their nature for the convenience of the reader.
15#
發(fā)表于 2025-3-24 03:30:16 | 只看該作者
https://doi.org/10.1007/978-3-642-22925-1In this chapter we continue this study and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form .where the kernel . is allowed to be not of constant sign.
16#
發(fā)表于 2025-3-24 07:50:41 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:32 | 只看該作者
A Cone Approximation to a Problem with ReflectionIn this chapter we continue this study and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form .where the kernel . is allowed to be not of constant sign.
18#
發(fā)表于 2025-3-24 15:23:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:43 | 只看該作者
20#
發(fā)表于 2025-3-25 03:04:48 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 16:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
凤翔县| 万全县| 江阴市| 乐至县| 平南县| 乌兰察布市| 高碑店市| 庆城县| 乳源| 南召县| 文山县| 彭阳县| 灵丘县| 和田县| 固始县| 常熟市| 容城县| 孝昌县| 长春市| 枞阳县| 城市| 永登县| 北海市| 四平市| 清镇市| 张家港市| 沁水县| 禹城市| 榆林市| 双牌县| 化德县| 和硕县| 慈溪市| 宜城市| 普格县| 囊谦县| 阜宁县| 建阳市| 东安县| 武胜县| 堆龙德庆县|