找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations with Involutions; Alberto Cabada,F. Adrián F. Tojo Book 2015 Atlantis Press and the author(s) 2015 Differential Equ

[復制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 10:56:17 | 只看該作者
12#
發(fā)表于 2025-3-23 15:45:39 | 只看該作者
https://doi.org/10.1007/978-3-642-49762-9itrary differentiable involutions, to the one studied in Chap.?.. As we will see, we will do this in three steps. First we add a term depending on .(.) which does not change much with respect to the previous situations. Then, moving from the reflection to a general involution is fairly simple using
13#
發(fā)表于 2025-3-23 18:04:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:55 | 只看該作者
https://doi.org/10.1007/978-3-642-49762-9This chapter is devoted to those results related to differential equations with reflection not directly associated with Green’s functions. The proofs of the results can be found in the bibliography cited for each case. We will not enter into detail with these results, but we summarize their nature for the convenience of the reader.
15#
發(fā)表于 2025-3-24 03:30:16 | 只看該作者
https://doi.org/10.1007/978-3-642-22925-1In this chapter we continue this study and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form .where the kernel . is allowed to be not of constant sign.
16#
發(fā)表于 2025-3-24 07:50:41 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:32 | 只看該作者
A Cone Approximation to a Problem with ReflectionIn this chapter we continue this study and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form .where the kernel . is allowed to be not of constant sign.
18#
發(fā)表于 2025-3-24 15:23:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:43 | 只看該作者
20#
發(fā)表于 2025-3-25 03:04:48 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 16:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
楚雄市| 麦盖提县| 汕尾市| 清流县| 梁山县| 宣恩县| 赣州市| 栖霞市| 盖州市| 太保市| 洛扎县| 达州市| 大竹县| 潞城市| 乌鲁木齐市| 安塞县| 临桂县| 庆安县| 尚义县| 湘西| 榆林市| 吴川市| 永新县| 油尖旺区| 贵定县| 肇源县| 河池市| 耿马| 黄山市| 宝兴县| 中超| 安义县| 手游| 庆云县| 道真| 洛阳市| 吉首市| 迭部县| 泸溪县| 兴山县| 左贡县|