找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations with Involutions; Alberto Cabada,F. Adrián F. Tojo Book 2015 Atlantis Press and the author(s) 2015 Differential Equ

[復制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 10:56:17 | 只看該作者
12#
發(fā)表于 2025-3-23 15:45:39 | 只看該作者
https://doi.org/10.1007/978-3-642-49762-9itrary differentiable involutions, to the one studied in Chap.?.. As we will see, we will do this in three steps. First we add a term depending on .(.) which does not change much with respect to the previous situations. Then, moving from the reflection to a general involution is fairly simple using
13#
發(fā)表于 2025-3-23 18:04:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:55 | 只看該作者
https://doi.org/10.1007/978-3-642-49762-9This chapter is devoted to those results related to differential equations with reflection not directly associated with Green’s functions. The proofs of the results can be found in the bibliography cited for each case. We will not enter into detail with these results, but we summarize their nature for the convenience of the reader.
15#
發(fā)表于 2025-3-24 03:30:16 | 只看該作者
https://doi.org/10.1007/978-3-642-22925-1In this chapter we continue this study and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form .where the kernel . is allowed to be not of constant sign.
16#
發(fā)表于 2025-3-24 07:50:41 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:32 | 只看該作者
A Cone Approximation to a Problem with ReflectionIn this chapter we continue this study and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form .where the kernel . is allowed to be not of constant sign.
18#
發(fā)表于 2025-3-24 15:23:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:43 | 只看該作者
20#
發(fā)表于 2025-3-25 03:04:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
玉田县| 铁岭市| 六枝特区| 四会市| 邳州市| 澳门| 涟源市| 洛扎县| 庆元县| 白水县| 寻乌县| 南溪县| 新河县| 昌邑市| 贵阳市| 新和县| 大连市| 洪湖市| 古浪县| 宝坻区| 建德市| 佛冈县| 呈贡县| 蓝山县| 广河县| 海兴县| 磐安县| 通州市| 公主岭市| 静安区| 武冈市| 湖北省| 丰顺县| 平谷区| 雅江县| 冷水江市| 博白县| 海伦市| 广水市| 广汉市| 古蔺县|