找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations Theory, Numerics and Applications; Proceedings of the I E. Groesen,E. Soewono Conference proceedings 1997 Springer S

[復(fù)制鏈接]
樓主: 領(lǐng)口
51#
發(fā)表于 2025-3-30 10:55:55 | 只看該作者
Racist Regimes, Forced Labour and Deathregarded as a simple model describing wind-induced oscillations of flexible structures like suspension bridges or overhead transmission lines. Using a two-timescales perturbation method approximations for solutions of this initial-boundary value problem will be constructed.
52#
發(fā)表于 2025-3-30 16:23:34 | 只看該作者
53#
發(fā)表于 2025-3-30 19:18:15 | 只看該作者
https://doi.org/10.1007/978-3-030-69281-0ned that would otherwise be difficult to detect. A general approach to the modelling of data is presented in this paper, and is illustrated for numerical data of the splitting of a wave due to bottom variations.
54#
發(fā)表于 2025-3-30 21:50:10 | 只看該作者
55#
發(fā)表于 2025-3-31 01:29:48 | 只看該作者
56#
發(fā)表于 2025-3-31 06:16:29 | 只看該作者
57#
發(fā)表于 2025-3-31 12:55:16 | 只看該作者
Parametric Excitation in Mechanical Systemsitation is characterized by terms in the differential equations which have time-dependent coefficients. A standard example of an equation which displays parametric excitation is the Mathieu equation. In this paper two systems will be considered in more detail: a pendulum and a stretched string both
58#
發(fā)表于 2025-3-31 15:03:02 | 只看該作者
59#
發(fā)表于 2025-3-31 18:44:52 | 只看該作者
60#
發(fā)表于 2025-3-31 21:58:56 | 只看該作者
The Influence of an External Force on a Solitary Wavemall amplitude, using both asymptotic analysis and numerical simulations. The analysis leads to a reduced dynamical system for the solitary wave amplitude and position, and this is analysed in detail. The theory predicts that the main regimes are passage, repulsion or trapping. These theoretical pre
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无为县| 师宗县| 永宁县| 长乐市| 新建县| 保山市| 兴安县| 黎川县| 定边县| 镇原县| 台北市| 犍为县| 凤冈县| 洛宁县| 隆安县| 甘泉县| 阿图什市| 建始县| 阜康市| 平顶山市| 阳江市| 娄底市| 郯城县| 虎林市| 朝阳区| 莫力| 全州县| 乌鲁木齐市| 万载县| 永吉县| 始兴县| 深水埗区| 宁津县| 延川县| 西丰县| 金寨县| 江西省| 绩溪县| 乌拉特后旗| 滨海县| 开平市|