找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable Manifolds; Forms, Currents, Har Georges Rham Book 1984 Springer-Verlag Berlin Heidelberg 1984 Differenzierbare Mannigfaltigk

[復(fù)制鏈接]
樓主: 根深蒂固
11#
發(fā)表于 2025-3-23 13:20:58 | 只看該作者
https://doi.org/10.1007/b101424An . dimensional . is a separable topological space, each point of which has a neighbourhood homeomorphic to an open . dimensional ball. Moreover we shall always suppose that this space admits a . of open sets, that is, there exist a countable sequence of open sets such that any open set may be expressed as a union of sets of the sequence.
12#
發(fā)表于 2025-3-23 17:53:33 | 只看該作者
Methods for Planar Image Quantification,In a manifold ., a current . is said to be . if .. It is said to be . if there exists a current . such that .; in this case, we also say that .. Two currents are said to be . if their difference is homologous to zero..
13#
發(fā)表于 2025-3-23 21:32:09 | 只看該作者
Rodolfo Bonifacio,Stefano OlivaresWe call a . a differentiable manifold . endowed with a twice covariant tensor . such that the differential quadratic form . is always positive definite. In the following, we will always suppose that . is . and the given tensor . is ..
14#
發(fā)表于 2025-3-24 02:08:42 | 只看該作者
15#
發(fā)表于 2025-3-24 03:22:18 | 只看該作者
Notions About Manifolds,An . dimensional . is a separable topological space, each point of which has a neighbourhood homeomorphic to an open . dimensional ball. Moreover we shall always suppose that this space admits a . of open sets, that is, there exist a countable sequence of open sets such that any open set may be expressed as a union of sets of the sequence.
16#
發(fā)表于 2025-3-24 07:34:31 | 只看該作者
Homologies,In a manifold ., a current . is said to be . if .. It is said to be . if there exists a current . such that .; in this case, we also say that .. Two currents are said to be . if their difference is homologous to zero..
17#
發(fā)表于 2025-3-24 13:56:37 | 只看該作者
Harmonic Forms,We call a . a differentiable manifold . endowed with a twice covariant tensor . such that the differential quadratic form . is always positive definite. In the following, we will always suppose that . is . and the given tensor . is ..
18#
發(fā)表于 2025-3-24 17:36:56 | 只看該作者
https://doi.org/10.1007/978-3-642-61752-2Differenzierbare Mannigfaltigkeit; Rham; Riemannian manifold; Varieties; manifold
19#
發(fā)表于 2025-3-24 21:47:25 | 只看該作者
20#
發(fā)表于 2025-3-25 00:10:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇明县| 抚顺县| 兴义市| 石河子市| 郁南县| 香格里拉县| 梅河口市| 灵山县| 简阳市| 三门峡市| 项城市| 徐州市| 伊宁县| 达日县| 安岳县| 鄂伦春自治旗| 崇左市| 萝北县| 定兴县| 理塘县| 抚顺县| 鄂州市| 叶城县| 长葛市| 石嘴山市| 衡南县| 吴堡县| 抚顺市| 明溪县| 双牌县| 曲沃县| 固始县| 治县。| 枣庄市| 灵山县| 兴化市| 长汀县| 泰宁县| 门源| 闸北区| 海林市|