找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable Manifolds; Lawrence Conlon Textbook 2001Latest edition Birkh?user Boston 2001 Differential Geometry.Global Calculus.Topolog

[復制鏈接]
樓主: 五個
21#
發(fā)表于 2025-3-25 06:56:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:52:58 | 只看該作者
23#
發(fā)表于 2025-3-25 15:36:05 | 只看該作者
24#
發(fā)表于 2025-3-25 16:30:04 | 只看該作者
Topological Manifolds,This chapter pertains to the global theory of manifolds. See also [., Chapter I] and [., Chapter 1].
25#
發(fā)表于 2025-3-25 21:48:30 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:29 | 只看該作者
The Global Theory of Smooth Functions,Our present goal is to extend the theory of smooth functions, developed on open subsets of ?. in Chapter 2, to arbitrary differentiable manifolds. Geometric topology becomes an essential feature.
27#
發(fā)表于 2025-3-26 04:33:21 | 只看該作者
Lie Groups and Lie Algebras,Lie groups and their Lie algebras play a central role in geometry, topology, and analysis. Here we can only give a brief introduction to this fascinating topic.
28#
發(fā)表于 2025-3-26 12:26:19 | 只看該作者
Multilinear Algebra and Tensors,Smooth functions, vector fields and 1-forms are . of fairly simple types. In order to handle higher order tensors, we will need some rather sophisticated multilinear algebra. The reader who is well grounded in the multilinear algebra of .-modules can skip ahead to Section 7.4, referring to the first three sections only as needed.
29#
發(fā)表于 2025-3-26 14:03:09 | 只看該作者
Forms and Foliations,In Section 4.5, we proved the vector field version of the Frobenius integrability theorem: . Γ(.) .(.) .. In this chapter, we develop an equivalent version of this theorem, stated in terms of the Grassmann algebra .*(.) of differential forms. Useful consequences of this point of view will be treated.
30#
發(fā)表于 2025-3-26 18:21:05 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿巴嘎旗| 观塘区| 乌兰察布市| 航空| 嘉善县| 炎陵县| 英吉沙县| 乌兰察布市| 西丰县| 修水县| 竹北市| 通海县| 远安县| 额敏县| 北碚区| 扶余县| 宜宾县| 高密市| 元朗区| 福建省| 秦皇岛市| 奇台县| 巴东县| 桂平市| 綦江县| 沛县| 玉山县| 黑水县| 南木林县| 固原市| 苍溪县| 汉阴县| 邵东县| 扶风县| 左权县| 伽师县| 安仁县| 温宿县| 柳江县| 垦利县| 孝义市|