找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Difference Equations from Differential Equations; Wilbert James Lick Book 1989 Springer-Verlag Berlin, Heidelberg 1989 Algebra.algorithm.a

[復制鏈接]
樓主: dabble
11#
發(fā)表于 2025-3-23 11:29:03 | 只看該作者
12#
發(fā)表于 2025-3-23 15:24:05 | 只看該作者
Parabolic Equations,ssified in much the same way as ordinary differential equations, e.g., first-order or higher-order, linear or nonlinear, homogeneous or non-homogeneous. Certain properties of PDEs are important in determining the appropriate numerical analysis for these PDEs and, because of this, those properties will be briefly reviewed here.
13#
發(fā)表于 2025-3-23 18:04:03 | 只看該作者
Hyperbolic Equations,l be functions of x, y, ?, ??/?x, and ??/?y. For b. ? 4ac > 0, the equation is hyperbolic and two families of real characteristics exist. As mentioned previously, characteristics are lines across which derivatives of the dependent variables may be discontinuous and along which infinitesimal disturbances may propagate.
14#
發(fā)表于 2025-3-24 02:11:46 | 只看該作者
15#
發(fā)表于 2025-3-24 02:23:20 | 只看該作者
16#
發(fā)表于 2025-3-24 09:14:12 | 只看該作者
17#
發(fā)表于 2025-3-24 10:41:58 | 只看該作者
18#
發(fā)表于 2025-3-24 18:49:33 | 只看該作者
Elliptic Equations,Elliptic partial differential equations usually describe the steady-state limit of problems where the time-dependent problem is described by parabolic or hyperbolic partial differential equations. They may also describe problems where the time dependence has an assumed form, such as sinusoidal with time.
19#
發(fā)表于 2025-3-24 19:43:41 | 只看該作者
Difference Equations from Differential Equations978-3-642-83701-2Series ISSN 0176-5035
20#
發(fā)表于 2025-3-24 23:56:43 | 只看該作者
E. Klieser,E. Lehmann,W. H. Strau?c difference equations from ordinary differential equations. A secondary purpose is to develop the proper ideas and procedures for later use in deriving difference equations from partial differential equations.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
镇雄县| 铜川市| 伊宁县| 高青县| 普兰县| 新化县| 黔东| 顺平县| 海口市| 新田县| 青神县| 革吉县| 内黄县| 朔州市| 乐亭县| 广灵县| 达拉特旗| 搜索| 阿拉尔市| 施秉县| 隆昌县| 浠水县| 深水埗区| 广平县| 濮阳县| 柞水县| 天等县| 隆尧县| 东阿县| 论坛| 休宁县| 游戏| 保德县| 汾阳市| 潍坊市| 兴山县| 仲巴县| 北海市| 修文县| 灵丘县| 高清|