找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Diffeomorphisms of Elliptic 3-Manifolds; Sungbok Hong,John Kalliongis,J. Hyam Rubinstein Book 2012 Springer-Verlag Berlin Heidelberg 2012

[復(fù)制鏈接]
樓主: Daguerreotype
11#
發(fā)表于 2025-3-23 10:41:57 | 只看該作者
,Fünfter Teil: K?mpfe des Rechtsgefühls,d section, we will state our main results on the Smale Conjecture, and provide some historical context. In the final two sections, we discuss isometries of nonelliptic three-manifolds, and address the possibility of applying Perelman’s methods to the Smale Conjecture.
12#
發(fā)表于 2025-3-23 17:04:26 | 只看該作者
13#
發(fā)表于 2025-3-23 20:04:43 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:47:59 | 只看該作者
Book 2012mannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equi
16#
發(fā)表于 2025-3-24 07:21:40 | 只看該作者
https://doi.org/10.1007/978-3-662-62120-2uction of the elliptic three-manifolds that contain a one-sided geometrically incompressible Klein bottle; they are described as a family of manifolds .(., .) that depend on two integer parameters .. Section 4.2 is a section-by-section outline of the entire proof, which constitutes the remaining sections of the chapter.
17#
發(fā)表于 2025-3-24 11:53:15 | 只看該作者
Elliptic Three-Manifolds Containing One-Sided Klein Bottles,uction of the elliptic three-manifolds that contain a one-sided geometrically incompressible Klein bottle; they are described as a family of manifolds .(., .) that depend on two integer parameters .. Section 4.2 is a section-by-section outline of the entire proof, which constitutes the remaining sections of the chapter.
18#
發(fā)表于 2025-3-24 15:21:26 | 只看該作者
Sungbok Hong,John Kalliongis,J. Hyam RubinsteinIncludes supplementary material:
19#
發(fā)表于 2025-3-24 21:48:42 | 只看該作者
20#
發(fā)表于 2025-3-24 23:28:28 | 只看該作者
Diffeomorphisms and Embeddings of Manifolds, the manifolds involved are compact. Versions of these and related facts are developed for manifolds with boundary, as well as in the context of fiber-preserving diffeomorphisms and maps. The latter utilizes a modification of the exponential map, called the aligned exponential, adapted to the fibered structure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瓮安县| 永和县| 静安区| 民县| 开阳县| 沾化县| 兴文县| 甘孜| 九江县| 岳阳市| 邵阳县| 苗栗县| 台前县| 中西区| 舞钢市| 垣曲县| 铁岭县| 色达县| 寿光市| 榆林市| 金山区| 周口市| 增城市| 仲巴县| 左云县| 东山县| 石棉县| 阳城县| 伊宁市| 镶黄旗| 山西省| 黎川县| 遂平县| 蕲春县| 余干县| 繁峙县| 普安县| 桐梓县| 连城县| 阳高县| 平江县|