找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Die Tonleiter und ihre Mathematik; Mathematische Theori Karlheinz Schüffler Book 2022Latest edition Der/die Herausgeber bzw. der/die Autor(

[復制鏈接]
樓主: 欺侮
21#
發(fā)表于 2025-3-25 06:17:08 | 只看該作者
22#
發(fā)表于 2025-3-25 10:51:45 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:48 | 只看該作者
d features an entirely fresh approach to musical intervals. Die Tonleiter – Trivialit?t oder Problem? Das vorliegende Buch geht dieser provokanten Frage nach. Dabei wird schnell klar, dass das Zusammenfügen von T?nen zu ?wohlklingenden“ Tonsystemen eine Herausforderung darstellt, deren Komplexit?t u
24#
發(fā)表于 2025-3-25 18:27:59 | 只看該作者
25#
發(fā)表于 2025-3-25 23:07:20 | 只看該作者
Metabolic Compartmentation in the Brainie Stufengeometrien für heptatonische und für chromatische einfache Wolfsquintskalen als auch darüber hinaus über die Symmetrie, Architektur und die Theorie der leitereigenen Intervalle für mehrfache Wolfsquintenskalen. Der Kapitelaufbau.enth?lt neben zahlreichen Beispielen auch Anwendungen in der musikalischen Praxis.
26#
發(fā)表于 2025-3-26 00:30:55 | 只看該作者
Carole Ichai,Jean-Christophe Orbanrch eine neue ?Verstehensebene“ für den Aufbau dieser signifikanten historischen Temperierungssysteme samt deren Verallgemeinerungen. Dadurch wird das musikalische Verst?ndnis hinsichtlich einer anwendenden Praxis gest?rkt.
27#
發(fā)表于 2025-3-26 07:38:35 | 只看該作者
P. E. Nowacki,W. Küstner,H. Haagte Zusammenh?nge zur klassischen Arithmetik der Primzahlen. Die Abschnitte dieses Kapitels.enden mit der notwendigen Anwendung der analytischen Begriffe der N?he und Distanz, der Konvergenz und Approximation für die Menge aller musikalischen Intervalle.
28#
發(fā)表于 2025-3-26 12:33:39 | 只看該作者
29#
發(fā)表于 2025-3-26 13:39:12 | 只看該作者
R. Balázs,Y. Machiyama,A. J. Patelrung, dem Theorem über die Tonverteilung und mit einer pr?zisen Funktions-Analysis der Iterationsspiralen einen deutlich mathematisch-analytischen Aspekt der Intervallarithmetik und ihren Architekturen.
30#
發(fā)表于 2025-3-26 18:49:11 | 只看該作者
Metabolic Compartmentation in the Brainngsmechanismen. In den Abschnitten.zeigen wir zun?chst die ?quivalenz dieser Skalenmodelle und entwickeln daraus eine musik-mathematische Theorie des problematischen Begriffs der ?Tonartencharakteristiken“.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
林口县| 菏泽市| 闻喜县| 华宁县| 徐汇区| 白河县| 凯里市| 永修县| 台湾省| 大姚县| 石河子市| 丰镇市| 宁南县| 柞水县| 拜城县| 青阳县| 方城县| 双流县| 错那县| 乡宁县| 齐齐哈尔市| 尚志市| 根河市| 汽车| 西乌珠穆沁旗| 开阳县| 平陆县| 图片| 建阳市| 德保县| 甘孜县| 宁河县| 特克斯县| 内丘县| 大连市| 汤原县| 缙云县| 伊通| 曲麻莱县| 乡城县| 安阳市|