找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Die Biegung kreissymmetrischer Platten von ver?nderlicher Dicke; Otto Pichler Book 1928 Springer-Verlag Berlin Heidelberg 1928 Biegung.Met

[復制鏈接]
樓主: autoantibodies
21#
發(fā)表于 2025-3-25 05:21:35 | 只看該作者
22#
發(fā)表于 2025-3-25 09:12:12 | 只看該作者
23#
發(fā)表于 2025-3-25 13:35:54 | 只看該作者
Architekturen – Eine EinführungMan kann die L?sung der Differentialgleichung.sofort angeben, wenn die rechte Seite die Form hat.also, wenn..
24#
發(fā)表于 2025-3-25 18:36:17 | 只看該作者
https://doi.org/10.1007/978-3-642-04321-51. Es wird die Differentialgleichung für die Biegung einer kreissymmetrischen Platte nicht konstanter Dicke aufgestellt, und ihre L?sung für kreissymmetrische Belastung mit Hilfe von Reihenentwicklungen angegeben.
25#
發(fā)表于 2025-3-25 22:57:22 | 只看該作者
Integration der Biegungsgleichung bei kreissymmetrischer Belastung,Im folgenden beschr?nken wir uns auf den Fall, da? die Belastung kreissymmetrisch ist. Die Biegungsgleichung l??t sich dann zurückführen auf die Form (11) von S. 13:..
26#
發(fā)表于 2025-3-26 01:07:16 | 只看該作者
,Analytische N?herungsl?sung für Platten ohne Bohrung mit dem Profil ,,Man kann die L?sung der Differentialgleichung.sofort angeben, wenn die rechte Seite die Form hat.also, wenn..
27#
發(fā)表于 2025-3-26 05:10:40 | 只看該作者
Zusammenfassung,1. Es wird die Differentialgleichung für die Biegung einer kreissymmetrischen Platte nicht konstanter Dicke aufgestellt, und ihre L?sung für kreissymmetrische Belastung mit Hilfe von Reihenentwicklungen angegeben.
28#
發(fā)表于 2025-3-26 10:56:28 | 只看該作者
29#
發(fā)表于 2025-3-26 13:04:09 | 只看該作者
30#
發(fā)表于 2025-3-26 17:30:15 | 只看該作者
978-3-662-31435-7Springer-Verlag Berlin Heidelberg 1928
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 14:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
荣成市| 如皋市| 宜丰县| 遂昌县| 榆树市| 井研县| 东光县| 巫山县| 宁南县| 洪泽县| 东明县| 凤山县| 池州市| 榆社县| 和政县| 英超| 台东县| 兖州市| 比如县| 德州市| 兰溪市| 都匀市| 盐边县| 元江| 通城县| 长乐市| 饶平县| 寿宁县| 修水县| 蛟河市| 新乡县| 镇江市| 竹溪县| 安阳县| 神农架林区| 阿克陶县| 平舆县| 曲阳县| 沅江市| 韩城市| 凤冈县|