找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments in Language Theory; 6th International Co Masami Ito,Masafumi Toyama Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: cerebral-cortex
11#
發(fā)表于 2025-3-23 11:29:00 | 只看該作者
Unary Language Operations and Their Nondeterministic State Complexityeterministic finite automata. In particular, we consider Boolean operations, concatenation, iteration, and λ-free iteration. Most of the bounds are tight in the exact number of states, i.e. the number is sufficient and necessary in the worst case. For the complementation of infinite languages a tigh
12#
發(fā)表于 2025-3-23 15:31:41 | 只看該作者
13#
發(fā)表于 2025-3-23 20:32:30 | 只看該作者
Roots and Powers of Regular Languagesive words . such that .. belongs to . for some . ≥ 1. There is a strong connection between the root and the powers of a regular language . namely, the .-power of . for an arbitrary finite set . with 0, 1, 2 ?, . is regular if and only if the root of . is finite. If the root is infinite then the .-po
14#
發(fā)表于 2025-3-23 23:15:30 | 只看該作者
Efficient Transformations from Regular Expressions to Finite Automataved the size of the resulting automaton from .(..) to .(.(log .).), and even .(. log .) for bounded alphabet size (where . is the size of the regular expression). A lower bound [.] shows this to be close to optimal, and also one of those constructions can be computed in optimal time [.].
15#
發(fā)表于 2025-3-24 02:57:19 | 只看該作者
Decision Problems for Linear and Circular Splicing Systemshe framework of formal language theory. In spite of a vast literature on splicing systems, briefly surveyed here, a few problems related to their computational power are still open. We intend to evidence how classical techniques and concepts in automata theory are a legitimate tool for investigating some of these problems.
16#
發(fā)表于 2025-3-24 07:13:19 | 只看該作者
17#
發(fā)表于 2025-3-24 13:11:46 | 只看該作者
Roots and Powers of Regular Languages .-power of . for an arbitrary finite set . with 0, 1, 2 ?, . is regular if and only if the root of . is finite. If the root is infinite then the .-power for most regular sets . is context-sensitive but not context-free. The stated property is decidable.
18#
發(fā)表于 2025-3-24 16:44:33 | 只看該作者
19#
發(fā)表于 2025-3-24 19:39:16 | 只看該作者
Wie Jungen mit Wrestling umgehennsional stochastic Turing machines (2-stm’s)”, and shows that for any . ≤ .(.) = .(.), .(.) space-bounded 2-ptm’s with bounded error are less powerful than .(.) space-bounded 2-stm’s with bounded error which start in nondeterministic mode, and make only one alternation between nondeterministic and probabilistic modes.
20#
發(fā)表于 2025-3-25 01:33:07 | 只看該作者
Rousseau, Schiller, Herder, Heinseved the size of the resulting automaton from .(..) to .(.(log .).), and even .(. log .) for bounded alphabet size (where . is the size of the regular expression). A lower bound [.] shows this to be close to optimal, and also one of those constructions can be computed in optimal time [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潼南县| 台山市| 紫阳县| 建始县| 台州市| 沧州市| 阿城市| 宜川县| 修武县| 宁河县| 汤阴县| 彰化市| 桃江县| 潞城市| 简阳市| 阳山县| 礼泉县| 齐齐哈尔市| 外汇| 舒城县| 水城县| 兴和县| 鄢陵县| 承德市| 龙口市| 修文县| 江孜县| 玉林市| 平塘县| 阿坝| 托里县| 新巴尔虎左旗| 子长县| 沙河市| 威宁| 临西县| 贡觉县| 陇川县| 红河县| 新兴县| 介休市|