找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Development in Language Theory; 15th International C Giancarlo Mauri,Alberto Leporati Conference proceedings 2011 Springer-Verlag GmbH Berl

[復(fù)制鏈接]
樓主: Hermit
41#
發(fā)表于 2025-3-28 18:22:22 | 只看該作者
42#
發(fā)表于 2025-3-28 20:39:11 | 只看該作者
https://doi.org/10.1007/978-3-319-30334-5xity of right ideals and prefix-closed languages, and that there exist left ideals and suffix-closed languages of syntactic complexity ..?+?.???1, and two-sided ideals and factor-closed languages of syntactic complexity ..?+?(.???2)2.?+?1.
43#
發(fā)表于 2025-3-28 22:55:59 | 只看該作者
44#
發(fā)表于 2025-3-29 06:00:07 | 只看該作者
45#
發(fā)表于 2025-3-29 07:14:27 | 只看該作者
46#
發(fā)表于 2025-3-29 13:19:22 | 只看該作者
47#
發(fā)表于 2025-3-29 18:01:49 | 只看該作者
User Generated Dialogue Systems: uDialogue,in this class of languages. Then we prove the existence of a unique maximal autosimulation relation in a given 2OTA and the existence of a unique minimal 2OTA which is simulation equivalent to this given 2OTA, both computable in polynomial time.
48#
發(fā)表于 2025-3-29 21:58:31 | 只看該作者
49#
發(fā)表于 2025-3-30 02:05:52 | 只看該作者
Avoiding Abelian Powers in Partial Wordsabelian .-free partial words of length . with . holes over a given alphabet grows exponentially as . increases. Finally, we prove that we cannot avoid abelian .th powers under arbitrary insertion of holes in an infinite word.
50#
發(fā)表于 2025-3-30 07:51:42 | 只看該作者
Simulations over Two-Dimensional On-Line Tessellation Automatain this class of languages. Then we prove the existence of a unique maximal autosimulation relation in a given 2OTA and the existence of a unique minimal 2OTA which is simulation equivalent to this given 2OTA, both computable in polynomial time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣武区| 葵青区| 雷波县| 米易县| 兴化市| 兖州市| 永新县| 耒阳市| 银川市| 阿瓦提县| 罗源县| 阿坝县| 七台河市| 酉阳| 安溪县| 洛隆县| 临湘市| 黑山县| 乐至县| 永胜县| 泸西县| 申扎县| 宜丰县| 宜昌市| 昂仁县| 桑日县| 东丽区| 东丽区| 通许县| 华宁县| 西畴县| 阿拉善右旗| 临沂市| 呼和浩特市| 泸水县| 淅川县| 富川| 江北区| 兴城市| 保德县| 三门县|