找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments and Retrospectives in Lie Theory; Algebraic Methods Geoffrey Mason,Ivan Penkov,Joseph A. Wolf Book 2014 Springer International

[復(fù)制鏈接]
樓主: tornado
31#
發(fā)表于 2025-3-26 22:10:27 | 只看該作者
32#
發(fā)表于 2025-3-27 03:29:48 | 只看該作者
33#
發(fā)表于 2025-3-27 05:43:16 | 只看該作者
,Variations on a Casselman–Osborne Theme,are not and the published proofs were completely different from each other. First we give simple, pedestrian arguments for both results based on the same principle. Then we give a natural generalization of these results in the setting of derived categories.
34#
發(fā)表于 2025-3-27 11:38:03 | 只看該作者
https://doi.org/10.1007/978-88-470-0374-3 algebras. Our main result is that if . is a Mackey Lie algebra and . is a dense subalgebra, then the monoidal category . is equivalent to . or .; the latter monoidal categories have been studied in detail in [.]. A possible choice of . is the well-known Lie algebra of generalized Jacobi matrices.
35#
發(fā)表于 2025-3-27 13:37:57 | 只看該作者
36#
發(fā)表于 2025-3-27 20:42:52 | 只看該作者
37#
發(fā)表于 2025-3-28 00:04:35 | 只看該作者
38#
發(fā)表于 2025-3-28 02:38:32 | 只看該作者
39#
發(fā)表于 2025-3-28 07:25:48 | 只看該作者
https://doi.org/10.1007/b138568As an application, effective bounds on the first cohomology of the symmetric group are obtained. We also show how, for finite Chevalley groups, our methods permit significant improvements over previous estimates for the dimensions of second cohomology groups.
40#
發(fā)表于 2025-3-28 10:41:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汾西县| 乌鲁木齐县| 东乡县| 东兰县| 成都市| 沁水县| 洛隆县| 伊金霍洛旗| 贡嘎县| 当涂县| 文山县| 灵璧县| 扶风县| 康平县| 乌拉特后旗| 大厂| 辰溪县| 阿合奇县| 乐昌市| 隆林| 四子王旗| 阜南县| 玉溪市| 哈尔滨市| 基隆市| 会同县| 施秉县| 宁蒗| 浑源县| 泰州市| 郑州市| 咸宁市| 吴旗县| 新竹县| 库尔勒市| 汉沽区| 沧州市| 抚松县| 德保县| 阳山县| 阳春市|