找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developing Networks using Artificial Intelligence; Haipeng Yao,Chunxiao Jiang,Yi Qian Book 2019 Springer Nature Switzerland AG 2019 machin

[復(fù)制鏈接]
查看: 22868|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:26:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Developing Networks using Artificial Intelligence
編輯Haipeng Yao,Chunxiao Jiang,Yi Qian
視頻videohttp://file.papertrans.cn/270/269773/269773.mp4
叢書名稱Wireless Networks
圖書封面Titlebook: Developing Networks using Artificial Intelligence;  Haipeng Yao,Chunxiao Jiang,Yi Qian Book 2019 Springer Nature Switzerland AG 2019 machin
描述.This book mainly discusses the most important issues in artificial intelligence-aided future networks, such as applying different ML approaches to investigate solutions to intelligently monitor, control and optimize networking. The authors focus on four scenarios of successfully applying machine learning in network space. It also discusses the main challenge of network traffic intelligent awareness and introduces several machine learning-based traffic awareness algorithms, such as traffic classification, anomaly traffic identification and traffic prediction. The authors introduce some ML approaches like reinforcement learning to deal with network control problem in this book...?Traditional works on the control plane largely rely on a manual process in configuring forwarding, which cannot be employed for today‘s network conditions. To address this issue, several artificial intelligence approaches for self-learning control strategies are introduced. In addition, resource management problems are ubiquitous in the networking field, such as job scheduling, bitrate adaptation in video streaming and virtual machine placement in cloud computing. Compared with the traditional with-box appr
出版日期Book 2019
關(guān)鍵詞machine learning; software-defined network; reinforcement learning; deep learning; intrusion detection; l
版次1
doihttps://doi.org/10.1007/978-3-030-15028-0
isbn_ebook978-3-030-15028-0Series ISSN 2366-1186 Series E-ISSN 2366-1445
issn_series 2366-1186
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Developing Networks using Artificial Intelligence影響因子(影響力)




書目名稱Developing Networks using Artificial Intelligence影響因子(影響力)學(xué)科排名




書目名稱Developing Networks using Artificial Intelligence網(wǎng)絡(luò)公開度




書目名稱Developing Networks using Artificial Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Developing Networks using Artificial Intelligence被引頻次




書目名稱Developing Networks using Artificial Intelligence被引頻次學(xué)科排名




書目名稱Developing Networks using Artificial Intelligence年度引用




書目名稱Developing Networks using Artificial Intelligence年度引用學(xué)科排名




書目名稱Developing Networks using Artificial Intelligence讀者反饋




書目名稱Developing Networks using Artificial Intelligence讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:35:11 | 只看該作者
Zu G.s geologischer Forschung nach 1800djustment of network traffic distribution, increase detection accuracy and reduce the false negative rate. Finally, we propose an end-to-end IoT traffic classification method relying on deep learning aided capsule network for the sake of forming an efficient classification mechanism that integrates
板凳
發(fā)表于 2025-3-22 03:57:00 | 只看該作者
地板
發(fā)表于 2025-3-22 08:22:16 | 只看該作者
Zu G.s geologischer Forschung nach 1800 system. We firstly propose an effective model for the similarity metrics of English sentences. In the model, we first make use of word embedding and convolutional neural network (CNN) to produce a sentence vector and then leverage the information of the sentence vector pair to calculate the score o
5#
發(fā)表于 2025-3-22 11:46:06 | 只看該作者
6#
發(fā)表于 2025-3-22 15:12:56 | 只看該作者
7#
發(fā)表于 2025-3-22 17:56:48 | 只看該作者
Intelligent Network Control, and propose a novel Quality of Service (QoS) enabled load scheduling algorithm based on reinforcement learning to solve the problem of complexity and pre-strategy in the networks. In addition, we present a Wireless Local Area Networks (WLAN) interference self-optimization method based on a Self-Org
8#
發(fā)表于 2025-3-23 01:17:27 | 只看該作者
Intention Based Networking Management, system. We firstly propose an effective model for the similarity metrics of English sentences. In the model, we first make use of word embedding and convolutional neural network (CNN) to produce a sentence vector and then leverage the information of the sentence vector pair to calculate the score o
9#
發(fā)表于 2025-3-23 01:58:30 | 只看該作者
Conclusions and Future Challenges, becomes substantially important to strengthen the management of data traffic in networks. As a critical part of massive data analysis, traffic awareness plays an important role in ensuring network security and defending traffic attacks. Moreover, the classification of different traffic can help to
10#
發(fā)表于 2025-3-23 09:36:08 | 只看該作者
Book 2019pproaches for self-learning control strategies are introduced. In addition, resource management problems are ubiquitous in the networking field, such as job scheduling, bitrate adaptation in video streaming and virtual machine placement in cloud computing. Compared with the traditional with-box appr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辛集市| 平邑县| 榆中县| 邵东县| 望都县| 镇沅| 万全县| 会同县| 越西县| 保山市| 佛冈县| 蓝山县| 都匀市| 桂阳县| 诸暨市| 乌审旗| 广宗县| 城固县| 都匀市| 象山县| 中西区| 盖州市| 祥云县| 桐梓县| 建平县| 息烽县| 长白| 平邑县| 岐山县| 如皋市| 靖远县| 昭通市| 侯马市| 安乡县| 霍城县| 手机| 洮南市| 调兵山市| 长乐市| 竹溪县| 新郑市|