找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deterministic Chaos in General Relativity; David Hobill,Adrian Burd,Alan Coley Book 1994 Springer Science+Business Media New York 1994 cha

[復(fù)制鏈接]
樓主: SCOWL
51#
發(fā)表于 2025-3-30 09:55:00 | 只看該作者
Methods in Human Growth Geneticse density with the distance as a power law (the de Vaucouleurs’ density power law), the fractal dimension within the range 1 ≤ . ≤ 2, and the present range of uncertainty for the Hubble constant. The spatially homogeneous Friedmann model is discussed as a special case of the Tolman solution, and it
52#
發(fā)表于 2025-3-30 15:30:55 | 只看該作者
53#
發(fā)表于 2025-3-30 18:44:55 | 只看該作者
Introduction to Dynamical Systemserence for these proceedings. The qualitative behaviour of both linear and non-linear autonomous differential equations is discussed. Particular attention is given to Liapunov stability theory, periodic orbits, limit sets, structural stability, and bifurcation theory, leading up to higher order syst
54#
發(fā)表于 2025-3-30 21:05:02 | 只看該作者
55#
發(fā)表于 2025-3-31 01:46:38 | 只看該作者
On Defining Chaos in the Absence of Timee of initial values. Using the recent discovery that the sensitivity hypothesis is a logical consequence of the other two conditions we formulate a time-and-metric independent concept of chaos for foliations which implies the usual definition when the leaves are the orbits of a flow on a manifold. S
56#
發(fā)表于 2025-3-31 08:32:23 | 只看該作者
Chaos in the Case of Two Fixed Black Holesnate either at the black holes .. and .. (types (I) and (II)), or at infinity (type (III)). The limits of these three types of orbits are Cantor sets, defined by the unstable periodic orbits, that form a set of measure zero. In the case of particles with elliptic energy there are some stable periodi
57#
發(fā)表于 2025-3-31 11:40:40 | 只看該作者
58#
發(fā)表于 2025-3-31 16:09:59 | 只看該作者
59#
發(fā)表于 2025-3-31 19:46:10 | 只看該作者
60#
發(fā)表于 2025-4-1 00:07:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 06:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
留坝县| 新密市| 洛扎县| 清丰县| 莱州市| 会理县| 临城县| 北流市| 巴中市| 马尔康县| 门源| 朝阳市| 六安市| 屏南县| 新乡市| 固镇县| 珲春市| 桐城市| 黄龙县| 太仆寺旗| 新昌县| 大城县| 余江县| 蓬莱市| 呼玛县| 调兵山市| 兴化市| 达拉特旗| 阜平县| 榆林市| 漯河市| 井陉县| 西畴县| 栖霞市| 贵港市| 石家庄市| 浪卡子县| 长沙市| 玉门市| 东兰县| 孝义市|