找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dessins d‘Enfants on Riemann Surfaces; Gareth A. Jones,Jürgen Wolfart Book 2016 Springer International Publishing Switzerland 2016 Dessins

[復(fù)制鏈接]
樓主: Fixate
11#
發(fā)表于 2025-3-23 13:25:57 | 只看該作者
12#
發(fā)表于 2025-3-23 16:58:21 | 只看該作者
https://doi.org/10.1007/978-3-662-03571-9rts, the curves with trivial automorphism group, quasiplatonic curves can be defined over their field of moduli. Many of the automorphism groups appearing in this chapter are 2-dimensional linear or projective groups over finite fields, so we summarise their most relevant properties in the final sec
13#
發(fā)表于 2025-3-23 20:11:30 | 只看該作者
14#
發(fā)表于 2025-3-23 22:49:42 | 只看該作者
15#
發(fā)表于 2025-3-24 05:59:27 | 只看該作者
16#
發(fā)表于 2025-3-24 07:54:36 | 只看該作者
L. Infante,Steffen Mieske,M. Hilkernineteenth-century work on Riemann surfaces, algebraic curves and holomorphic functions, and twentieth-century research on regular maps, to the fundamental and far-reaching ideas circulated by Grothendieck in the 1980s, and subsequent efforts to implement his programme. After this we summarise the b
17#
發(fā)表于 2025-3-24 12:26:36 | 只看該作者
18#
發(fā)表于 2025-3-24 15:11:07 | 只看該作者
The Evolution of Brightest Cluster Galaxiesn mapping theorem. We describe the classification of cocompact Fuchsian groups, and the local and global properties of quotients of the hyperbolic plane by such groups. We discuss the inclusion relations between these groups, classified by Singerman, giving particular attention to triangle groups. T
19#
發(fā)表于 2025-3-24 20:16:19 | 只看該作者
Elisabeth Vangioni-Flam,Michel Casséunction fields. The latter examples provide a link between Galois groups and covering groups for regular coverings. Another important example is the absolute Galois group ., the automorphism group of the field of all algebraic numbers: as the projective limit of the (finite) Galois groups of the Gal
20#
發(fā)表于 2025-3-25 03:07:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
军事| 介休市| 仙桃市| 华蓥市| 齐河县| 集安市| 兴山县| 安化县| 屯门区| 遂溪县| 弥渡县| 武隆县| 龙州县| 广元市| 海口市| 屏南县| 斗六市| 中超| 贵港市| 乐清市| 手游| 丰都县| 时尚| 茶陵县| 平阴县| 岚皋县| 张家港市| 永胜县| 平乡县| 湖州市| 滨州市| 韶山市| 宾川县| 巴青县| 西乌| 右玉县| 泰顺县| 巴彦县| 翁牛特旗| 广河县| 黔西|